train.py 12.3 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
import argparse
import os
import random
import time

import numpy as np
import paddle
import paddle.nn.functional as F

from paddlenlp.data import Stack, Tuple, Pad
import paddlenlp as ppnlp

MODEL_CLASSES = {
    "bert": (ppnlp.transformers.BertForSequenceClassification,
             ppnlp.transformers.BertTokenizer),
    'ernie': (ppnlp.transformers.ErnieForSequenceClassification,
              ppnlp.transformers.ErnieTokenizer),
    'roberta': (ppnlp.transformers.RobertaForSequenceClassification,
                ppnlp.transformers.RobertaTokenizer),
    'electra': (ppnlp.transformers.ElectraForSequenceClassification,
                ppnlp.transformers.ElectraTokenizer)
}


def parse_args():
    parser = argparse.ArgumentParser()
    # Required parameters
    parser.add_argument(
        "--model_type",
        default='ernie',
        required=True,
        type=str,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument(
        "--model_name",
        default='ernie_tiny',
        required=True,
        type=str,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(
            sum([
                list(classes[-1].pretrained_init_configuration.keys())
                for classes in MODEL_CLASSES.values()
            ], [])))
    parser.add_argument(
        "--save_dir",
        default='./checkpoint',
        required=True,
        type=str,
        help="The output directory where the model checkpoints will be written.")

    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. "
        "Sequences longer than this will be truncated, sequences shorter will be padded."
    )
    parser.add_argument(
        "--batch_size",
        default=32,
        type=int,
        help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--learning_rate",
        default=5e-5,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--weight_decay",
        default=0.0,
        type=float,
        help="Weight decay if we apply some.")
    parser.add_argument(
        "--epochs",
        default=3,
        type=int,
        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proption",
        default=0.1,
        type=float,
        help="Linear warmup proption over the training process.")
    parser.add_argument(
        "--init_from_ckpt",
        type=str,
        default=None,
        help="The path of checkpoint to be loaded.")
    parser.add_argument(
        "--seed", type=int, default=1000, help="random seed for initialization")
    parser.add_argument(
        "--n_gpu",
        type=int,
        default=1,
        help="Number of GPUs to use, 0 for CPU.")
    args = parser.parse_args()
    return args


def set_seed(args):
    """sets random seed"""
    random.seed(args.seed)
    np.random.seed(args.seed)
    paddle.seed(args.seed)


def evaluate(model, criterion, metric, data_loader):
    """
    Given a dataset, it evals model and computes the metric.

    Args:
        model(obj:`paddle.nn.Layer`): A model to classify texts.
        data_loader(obj:`paddle.io.DataLoader`): The dataset loader which generates batches.
        criterion(obj:`paddle.nn.Layer`): It can compute the loss.
        metric(obj:`paddle.metric.Metric`): The evaluation metric.
    """
    model.eval()
    metric.reset()
    losses = []
    for batch in data_loader:
        input_ids, segment_ids, labels = batch
        logits = model(input_ids, segment_ids)
        loss = criterion(logits, labels)
        losses.append(loss.numpy())
        correct = metric.compute(logits, labels)
        metric.update(correct)
        accu = metric.accumulate()
    print("eval loss: %.5f, accu: %.5f" % (np.mean(losses), accu))
    model.train()
    metric.reset()


def convert_example(example,
                    tokenizer,
                    label_list,
                    max_seq_length=512,
                    is_test=False):
    """
    Builds model inputs from a sequence or a pair of sequence for sequence classification tasks
    by concatenating and adding special tokens. And creates a mask from the two sequences passed 
    to be used in a sequence-pair classification task.
        
    A BERT sequence has the following format:

    - single sequence: ``[CLS] X [SEP]``
    - pair of sequences: ``[CLS] A [SEP] B [SEP]``

    A BERT sequence pair mask has the following format:
    ::
        0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
        | first sequence    | second sequence |

    If only one sequence, only returns the first portion of the mask (0's).


    Args:
        example(obj:`list[str]`): List of input data, containing text and label if it have label.
        tokenizer(obj:`PretrainedTokenizer`): This tokenizer inherits from :class:`~paddlenlp.transformers.PretrainedTokenizer` 
            which contains most of the methods. Users should refer to the superclass for more information regarding methods.
        label_list(obj:`list[str]`): All the labels that the data has.
        max_seq_len(obj:`int`): The maximum total input sequence length after tokenization. 
            Sequences longer than this will be truncated, sequences shorter will be padded.
        is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.

    Returns:
        input_ids(obj:`list[int]`): The list of token ids.
        segment_ids(obj: `list[int]`): List of sequence pair mask.
        label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
    """
    text, label = example
    encoded_inputs = tokenizer.encode(text=text, max_seq_len=max_seq_length)
    input_ids = encoded_inputs["input_ids"]
    segment_ids = encoded_inputs["segment_ids"]

    if not is_test:
        #create label maps if classification task
        if label_list:
            label_map = {}
            for (i, l) in enumerate(label_list):
                label_map[l] = i
            label = label_map[label]
        label = np.array([label], dtype="int64")
        return input_ids, segment_ids, label
    else:
        return input_ids, segment_ids


def create_dataloader(dataset,
                      mode='train',
                      batch_size=1,
                      batchify_fn=None,
                      trans_fn=None):
    if trans_fn:
        dataset = dataset.apply(trans_fn, lazy=True)

    shuffle = True if mode == 'train' else False
    if mode == 'train':
        batch_sampler = paddle.io.DistributedBatchSampler(
            dataset, batch_size=batch_size, shuffle=shuffle)
    else:
        batch_sampler = paddle.io.BatchSampler(
            dataset, batch_size=batch_size, shuffle=shuffle)

    return paddle.io.DataLoader(
        dataset=dataset,
        batch_sampler=batch_sampler,
        collate_fn=batchify_fn,
        return_list=True)


def do_train(args):
    set_seed(args)
    paddle.set_device("gpu" if args.n_gpu else "cpu")
    world_size = paddle.distributed.get_world_size()
    if world_size > 1:
        paddle.distributed.init_parallel_env()

    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

    train_dataset, dev_dataset, test_dataset = ppnlp.datasets.ChnSentiCorp.get_datasets(
        ['train', 'dev', 'test'])
    if args.model_name == 'ernie_tiny':
        # ErnieTinyTokenizer is special for ernie_tiny pretained model.
        tokenizer = ppnlp.transformers.ErnieTinyTokenizer.from_pretrained(
            args.model_name)
    else:
        tokenizer = tokenizer_class.from_pretrained(args.model_name)

    trans_func = partial(
        convert_example,
        tokenizer=tokenizer,
        label_list=train_dataset.get_labels(),
        max_seq_length=args.max_seq_length)
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # segment
        Stack(dtype="int64")  # label
    ): [data for data in fn(samples)]
    train_data_loader = create_dataloader(
        train_dataset,
        mode='train',
        batch_size=args.batch_size,
        batchify_fn=batchify_fn,
        trans_fn=trans_func)
    dev_data_loader = create_dataloader(
        dev_dataset,
        mode='dev',
        batch_size=args.batch_size,
        batchify_fn=batchify_fn,
        trans_fn=trans_func)
    test_data_loader = create_dataloader(
        test_dataset,
        mode='test',
        batch_size=args.batch_size,
        batchify_fn=batchify_fn,
        trans_fn=trans_func)

    model = model_class.from_pretrained(
        args.model_name, num_classes=len(train_dataset.get_labels()))

    if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
        state_dict = paddle.load(args.init_from_ckpt)
        model.set_dict(state_dict)
    model = paddle.DataParallel(model)

    num_training_steps = len(train_data_loader) * args.epochs
    num_warmup_steps = int(args.warmup_proption * num_training_steps)

    def get_lr_factor(current_step):
        if current_step < num_warmup_steps:
            return float(current_step) / float(max(1, num_warmup_steps))
        else:
            return max(0.0,
                       float(num_training_steps - current_step) /
                       float(max(1, num_training_steps - num_warmup_steps)))

    lr_scheduler = paddle.optimizer.lr.LambdaDecay(
        args.learning_rate,
        lr_lambda=lambda current_step: get_lr_factor(current_step))
    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])

    criterion = paddle.nn.loss.CrossEntropyLoss()
    metric = paddle.metric.Accuracy(name='acc_accumulation')

    global_step = 0
    tic_train = time.time()
    for epoch in range(1, args.epochs + 1):
        for step, batch in enumerate(train_data_loader, start=1):
            input_ids, segment_ids, labels = batch
            logits = model(input_ids, segment_ids)
            loss = criterion(logits, labels)
            probs = F.softmax(logits, axis=1)
            correct = metric.compute(probs, labels)
            metric.update(correct)
            acc = metric.accumulate()

            global_step += 1
            if global_step % 10 == 0 and paddle.distributed.get_rank() == 0:
                print(
                    "global step %d, epoch: %d, batch: %d, loss: %.5f, accu: %.5f, speed: %.2f step/s"
                    % (global_step, epoch, step, loss, acc,
                       10 / (time.time() - tic_train)))
                tic_train = time.time()
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.clear_gradients()
            if global_step % 100 == 0 and paddle.distributed.get_rank() == 0:
                save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                evaluate(model, criterion, metric, dev_data_loader)
                model._layers.save_pretrained(save_dir)
                tokenizer.save_pretrained(save_dir)

    if paddle.distributed.get_rank() == 0:
        print('Evaluating on test data.')
        evaluate(model, criterion, metric, test_data_loader)


if __name__ == "__main__":
    args = parse_args()
    if args.n_gpu > 1:
        paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_gpu)
    else:
        do_train(args)