network_conf.py 10.7 KB
Newer Older
S
Superjom 已提交
1 2
from paddle import v2 as paddle
from paddle.v2.attr import ParamAttr
S
Superjom 已提交
3
from utils import TaskType, logger, ModelType, ModelArch
S
Superjom 已提交
4 5 6 7 8 9


class DSSM(object):
    def __init__(self,
                 dnn_dims=[],
                 vocab_sizes=[],
S
Superjom 已提交
10 11
                 model_type=ModelType.create_classification(),
                 model_arch=ModelArch.create_cnn(),
S
Superjom 已提交
12 13 14 15 16 17 18 19
                 share_semantic_generator=False,
                 class_num=None,
                 share_embed=False):
        '''
        @dnn_dims: list of int
            dimentions of each layer in semantic vector generator.
        @vocab_sizes: 2-d tuple
            size of both left and right items.
S
Superjom 已提交
20 21 22 23
        @model_type: int
            type of task, should be 'rank: 0', 'regression: 1' or 'classification: 2'
        @model_arch: int
            model architecture
S
Superjom 已提交
24 25 26 27 28 29 30 31 32 33
        @share_semantic_generator: bool
            whether to share the semantic vector generator for both left and right.
        @share_embed: bool
            whether to share the embeddings between left and right.
        @class_num: int
            number of categories.
        '''
        assert len(
            vocab_sizes
        ) == 2, "vocab_sizes specify the sizes left and right inputs, and dim should be 2."
S
Superjom 已提交
34
        assert len(dnn_dims) > 1, "more than two layers is needed."
S
Superjom 已提交
35 36 37 38 39

        self.dnn_dims = dnn_dims
        self.vocab_sizes = vocab_sizes
        self.share_semantic_generator = share_semantic_generator
        self.share_embed = share_embed
S
Superjom 已提交
40 41
        self.model_type = ModelType(model_type)
        self.model_arch = ModelArch(model_arch)
S
Superjom 已提交
42
        self.class_num = class_num
S
Superjom 已提交
43 44
        logger.warning("build DSSM model with config of %s, %s" %
                       (self.model_type, self.model_arch))
S
Superjom 已提交
45 46
        logger.info("vocabulary sizes: %s" % str(self.vocab_sizes))

S
Superjom 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        # bind model architecture
        _model_arch = {
            'cnn': self.create_cnn,
            'fc': self.create_fc,
        }
        self.model_arch_creater = _model_arch[str(model_arch)]

        # build model type
        _model_type = {
            'classification': self._build_classification_model,
            'rank': self._build_rank_model,
            'regression': self._build_regression_model,
        }
        self.model_type_creater = _model_type[str(self.model_type)]

S
Superjom 已提交
62
    def __call__(self):
S
Superjom 已提交
63
        if self.model_type.is_classification():
S
Superjom 已提交
64 65 66 67 68 69 70
            return self._build_classification_model()
        return self._build_rank_model()

    def create_embedding(self, input, prefix=''):
        '''
        Create an embedding table whose name has a `prefix`.
        '''
S
Superjom 已提交
71 72
        logger.info("create embedding table [%s] which dimention is %d" %
                    (prefix, self.dnn_dims[0]))
S
Superjom 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        emb = paddle.layer.embedding(
            input=input,
            size=self.dnn_dims[0],
            param_attr=ParamAttr(name='%s_emb.w' % prefix))
        return emb

    def create_fc(self, emb, prefix=''):
        '''
        A multi-layer fully connected neural networks.

        @emb: paddle.layer
            output of the embedding layer
        @prefix: str
            prefix of layers' names, used to share parameters between more than one `fc` parts.
        '''
        _input_layer = paddle.layer.pooling(
            input=emb, pooling_type=paddle.pooling.Max())
        for id, dim in enumerate(self.dnn_dims[1:]):
            name = "%s_fc_%d_%d" % (prefix, id, dim)
S
Superjom 已提交
92 93
            logger.info("create fc layer [%s] which dimention is %d" % (name,
                                                                        dim))
S
Superjom 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            fc = paddle.layer.fc(
                name=name,
                input=_input_layer,
                size=dim,
                act=paddle.activation.Relu(),
                param_attr=ParamAttr(name='%s.w' % name),
                bias_attr=None, )
            _input_layer = fc
        return _input_layer

    def create_cnn(self, emb, prefix=''):
        '''
        A multi-layer CNN.

        @emb: paddle.layer
            output of the embedding layer
        @prefix: str
            prefix of layers' names, used to share parameters between more than one `cnn` parts.
        '''

S
Superjom 已提交
114 115 116 117 118 119 120 121 122 123 124 125
        def create_conv(context_len, hidden_size, prefix):
            key = "%s_%d_%d" % (prefix, context_len, hidden_size)
            conv = paddle.networks.sequence_conv_pool(
                input=emb,
                context_len=context_len,
                hidden_size=hidden_size,
                # set parameter attr for parameter sharing
                context_proj_param_attr=ParamAttr(name=key + 'contex_proj.w'),
                fc_param_attr=ParamAttr(name=key + '_fc.w'),
                fc_bias_attr=ParamAttr(name=key + '_fc.b'),
                pool_bias_attr=ParamAttr(name=key + '_pool.b'))
            return conv
S
Superjom 已提交
126

S
Superjom 已提交
127 128 129 130
        logger.info('create a sequence_conv_pool which context width is 3')
        conv_3 = create_conv(3, self.dnn_dims[1], "cnn")
        logger.info('create a sequence_conv_pool which context width is 4')
        conv_4 = create_conv(4, self.dnn_dims[1], "cnn")
S
Superjom 已提交
131

S
Superjom 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        # if more than three layers, than a fc layer will be added.
        if len(self.dnn_dims) > 2:
            _input_layer = [conv_3, conv_4]
            for id, dim in enumerate(self.dnn_dims[2:]):
                name = "%s_fc_%d_%d" % (prefix, id, dim)
                logger.info("create fc layer [%s] which dimention is %d" %
                            (name, dim))
                fc = paddle.layer.fc(
                    name=name,
                    input=_input_layer,
                    size=dim,
                    act=paddle.activation.Tanh(),
                    param_attr=ParamAttr(name='%s.w' % name),
                    bias_attr=ParamAttr(name='%s.b' % name))
                _input_layer = fc
        return _input_layer
S
Superjom 已提交
148

S
Superjom 已提交
149 150 151
    def _build_classification_model(self):
        return self._build_classification_or_regression_model(
            is_classification=True)
S
Superjom 已提交
152

S
Superjom 已提交
153 154 155
    def _build_regression_model(self):
        return self._build_classification_or_regression_model(
            is_classification=False)
S
Superjom 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    def _build_rank_model(self):
        '''
        Build a pairwise rank model, and the cost is returned.

        A pairwise rank model has 3 inputs:
          - source sentence
          - left_target sentence
          - right_target sentence
          - label, 1 if left_target should be sorted in front of right_target, otherwise 0.
        '''
        source = paddle.layer.data(
            name='source_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
        left_target = paddle.layer.data(
            name='left_target_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
        right_target = paddle.layer.data(
            name='right_target_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
        label = paddle.layer.data(
            name='label_input', type=paddle.data_type.integer_value(1))

        prefixs = '_ _ _'.split(
        ) if self.share_semantic_generator else 'source left right'.split()
        embed_prefixs = '_ _'.split(
        ) if self.share_embed else 'source target target'.split()

        word_vecs = []
        for id, input in enumerate([source, left_target, right_target]):
            x = self.create_embedding(input, prefix=embed_prefixs[id])
            word_vecs.append(x)

        semantics = []
        for id, input in enumerate(word_vecs):
S
Superjom 已提交
191
            x = self.model_arch_creater(input, prefix=prefixs[id])
S
Superjom 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205
            semantics.append(x)

        # cossim score of source and left_target
        left_score = paddle.layer.cos_sim(semantics[0], semantics[1])
        # cossim score of source and right target
        right_score = paddle.layer.cos_sim(semantics[0], semantics[2])

        # rank cost
        cost = paddle.layer.rank_cost(left_score, right_score, label=label)
        # prediction = left_score - right_score
        # but this operator is not supported currently.
        # so AUC will not used.
        return cost, None, None

S
Superjom 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    def _build_classification_or_regression_model(self, is_classification):
        '''
        Build a classification model, and the cost is returned.

        A Classification has 3 inputs:
          - source sentence
          - target sentence
          - classification label

        '''
        # prepare inputs.
        assert self.class_num

        source = paddle.layer.data(
            name='source_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
        target = paddle.layer.data(
            name='target_input',
            type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
        label = paddle.layer.data(
            name='label_input',
            type=paddle.data_type.integer_value(self.class_num)
            if is_classification else paddle.data_type.dense_input)

        prefixs = '_ _'.split(
        ) if self.share_semantic_generator else 'left right'.split()
        embed_prefixs = '_ _'.split(
        ) if self.share_embed else 'left right'.split()

        word_vecs = []
        for id, input in enumerate([source, target]):
            x = self.create_embedding(input, prefix=embed_prefixs[id])
            word_vecs.append(x)

        semantics = []
        for id, input in enumerate(word_vecs):
            x = self.model_arch_creater(input, prefix=prefixs[id])
            semantics.append(x)

        concated_vector = paddle.layer.concat(semantics)
        prediction = paddle.layer.fc(
            input=concated_vector,
            size=self.class_num,
            act=paddle.activation.Softmax())
        cost = paddle.layer.classification_cost(
            input=prediction,
            label=label) if is_classification else paddle.layer.mse_cost(
                prediction, label)
        return cost, prediction, label

S
Superjom 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

class RankMetrics(object):
    '''
    A custom metrics to calculate AUC.

    Paddle's rank model do not support auc evaluator directly,
    to make it, infer all the outputs and use python to calculate
    the metrics.
    '''

    def __init__(self, model_parameters, left_score_layer, right_score_layer,
                 label):
        '''
        @model_parameters: dict
            model's parameters
        @left_score_layer: paddle.layer
            left part's score
        @right_score_laeyr: paddle.layer
            right part's score
        @label: paddle.data_layer
            label input
        '''
        self.inferer = paddle.inference.Inference(
            output_layer=[left_score_layer, right_score_layer],
            parameters=model_parameters)

    def test(self, input):
        scores = []
        for id, rcd in enumerate(input()):
            # output [left_score, right_score, label]
            res = self.inferer(input=input)
            scores.append(res)
        print scores