faster_rcnn_se154_1x.yml 2.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 180000
snapshot_iter: 10000
use_gpu: True
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/SE154_vd_pretrained.tar
weights: output/faster_rcnn_se154_1x/model_final
metric: COCO

FasterRCNN:
  backbone: SENet
  fpn: null
  rpn_head: RPNHead
  roi_extractor: RoIAlign
  bbox_head: BBoxHead
  bbox_assigner: BBoxAssigner

SENet:
  depth: 152
  feature_maps: [2, 3, 4]
  freeze_at: 2
  group_width: 4
  groups: 64
  norm_type: affine_channel
  variant: d

SENetC5:
  depth: 152
  feature_maps: 5
  freeze_at: 2
  group_width: 4
  groups: 64
  norm_type: affine_channel
  variant: d

RPNHead:
  anchor_generator:
    anchor_sizes: [32, 64, 128, 256, 512]
    aspect_ratios: [0.5, 1.0, 2.0]
    stride: [16.0, 16.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  rpn_target_assign:
    rpn_batch_size_per_im: 256
    rpn_fg_fraction: 0.5
    rpn_negative_overlap: 0.3
    rpn_positive_overlap: 0.7
    rpn_straddle_thresh: 0.0
  train_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    post_nms_top_n: 2000
    pre_nms_top_n: 12000
  test_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    post_nms_top_n: 1000
    pre_nms_top_n: 6000

RoIAlign:
  resolution: 7
  sampling_ratio: 0
  spatial_scale: 0.0625

BBoxAssigner:
  batch_size_per_im: 512
  bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
  bg_thresh_hi: 0.5
  bg_thresh_lo: 0.0
  fg_fraction: 0.25
  fg_thresh: 0.5
  num_classes: 81

BBoxHead:
  head: SENetC5
  nms:
    keep_top_k: 100
    nms_threshold: 0.5
    score_threshold: 0.05
  num_classes: 81

LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [120000, 160000]
    values: null
  - !LinearWarmup
    start_factor: 0.1
    steps: 1000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

FasterRCNNTrainFeed:
  # batch size per device
  batch_size: 1
  dataset:
    dataset_dir: data/coco
    annotation: annotations/instances_val2017.json
    image_dir: val2017
  num_workers: 2
  shuffle: True

FasterRCNNEvalFeed:
  batch_size: 1
  dataset:
    dataset_dir: data/coco
    annotation: annotations/instances_val2017.json
    image_dir: val2017
  num_workers: 2

FasterRCNNTestFeed:
  batch_size: 1
  dataset:
    dataset_dir: data/coco 
    annotation: annotations/instances_val2017.json
    image_dir: val2017
  test_file: val2017.txt
  num_workers: 2
  shuffle: False