predict.py 4.5 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import argparse
import numpy as np
import cv2
import os
19
import logging
littletomatodonkey's avatar
littletomatodonkey 已提交
20 21 22 23 24 25

from paddle import fluid
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor

26 27 28
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

littletomatodonkey's avatar
littletomatodonkey 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

def resize_short(img, target_size, interpolation=None):
    """resize image
    
    Args:
        img: image data
        target_size: resize short target size
        interpolation: interpolation mode

    Returns:
        resized image data
    """
    percent = float(target_size) / min(img.shape[0], img.shape[1])
    resized_width = int(round(img.shape[1] * percent))
    resized_height = int(round(img.shape[0] * percent))
    if interpolation:
        resized = cv2.resize(
            img, (resized_width, resized_height), interpolation=interpolation)
    else:
        resized = cv2.resize(img, (resized_width, resized_height))
    return resized


def crop_image(img, target_size, center):
    """crop image 
    
    Args:
        img: images data
        target_size: crop target size
        center: crop mode
    
    Returns:
        img: cropped image data
    """
    height, width = img.shape[:2]
    size = target_size
    if center == True:
        w_start = (width - size) // 2
        h_start = (height - size) // 2
    else:
        w_start = np.random.randint(0, width - size + 1)
        h_start = np.random.randint(0, height - size + 1)
    w_end = w_start + size
    h_end = h_start + size
    img = img[h_start:h_end, w_start:w_end, :]
    return img


def preprocess_image(img_path):
    """ preprocess_image """

    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]
    crop_size = 224
    target_size = 256

    img = cv2.imread(img_path)
    img = resize_short(img, target_size, interpolation=None)
    img = crop_image(img, target_size=crop_size, center=True)
    img = img[:, :, ::-1]

    img = img.astype('float32').transpose((2, 0, 1)) / 255
    img_mean = np.array(mean).reshape((3, 1, 1))
    img_std = np.array(std).reshape((3, 1, 1))
    img -= img_mean
    img /= img_std
    img = np.expand_dims(img, axis=0).copy()
    return img


def predict(args):
    # config AnalysisConfig
    config = AnalysisConfig(args.model_file, args.params_file)
    if args.gpu_id < 0:
        config.disable_gpu()
    else:
        config.enable_use_gpu(args.gpu_mem, args.gpu_id)

    # create predictor
    predictor = create_paddle_predictor(config.to_native_config())

    # input
    inputs = preprocess_image(args.image_path)
    inputs = PaddleTensor(inputs)

    # predict
    outputs = predictor.run([inputs])

    # get output
    output = outputs[0]
    output = output.as_ndarray().flatten()

    cls = np.argmax(output)
    score = output[cls]
123 124
    logger.info("class: ", cls)
    logger.info("score: ", score)
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    return


def check_args(args):
    assert os.path.exists(args.model_file), "model_file({}) not exist!".format(
        args.model_file)
    assert os.path.exists(
        args.params_file), "params_file({}) not exist!".format(args.params_file)
    assert os.path.exists(args.image_path), "image_path({}) not exist!".format(
        args.image_path)
    assert isinstance(args.gpu_id, int)
    assert isinstance(args.gpu_mem, int)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_file", type=str, default="", help="model filename")
    parser.add_argument(
        "--params_file", type=str, default="", help="parameter filename")
    parser.add_argument("--image_path", type=str, default="", help="image path")
    parser.add_argument(
        "--gpu_id",
        type=int,
        default=0,
        help="gpu id, if less than 0, gpu is disabled")
    parser.add_argument(
        "--gpu_mem", type=int, default=2000, help="gpu memory, unit: MB")
    return parser.parse_args()


def main():
    args = parse_args()
    check_args(args)
    predict(args)


if __name__ == "__main__":
    main()