nets.py 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers.nn as nn
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf
import paddle.fluid.layers.io as io


class BowEncoder(object):
    """ bow-encoder """

    def __init__(self):
        self.param_name = ""

    def forward(self, emb):
        return nn.sequence_pool(input=emb, pool_type='sum')


class CNNEncoder(object):
    """ cnn-encoder"""

    def __init__(self,
                 param_name="cnn.w",
                 win_size=3,
                 ksize=128,
                 act='tanh',
                 pool_type='max'):
        self.param_name = param_name
        self.win_size = win_size
        self.ksize = ksize
        self.act = act
        self.pool_type = pool_type

    def forward(self, emb):
        return fluid.nets.sequence_conv_pool(
            input=emb,
            num_filters=self.ksize,
            filter_size=self.win_size,
            act=self.act,
            pool_type=self.pool_type,
            attr=self.param_name)


class GrnnEncoder(object):
    """ grnn-encoder """

    def __init__(self, param_name="grnn.w", hidden_size=128):
        self.param_name = args
        self.hidden_size = hidden_size

    def forward(self, emb):
        fc0 = nn.fc(input=emb, size=self.hidden_size * 3)
        gru_h = nn.dynamic_gru(
            input=emb,
            size=self.hidden_size,
            is_reverse=False,
            attr=self.param_name)
        return nn.sequence_pool(input=gru_h, pool_type='max')


'''this is a very simple Encoder factory
most default argument values are used'''


class SimpleEncoderFactory(object):
    def __init__(self):
        pass

    ''' create an encoder through create function '''

    def create(self, enc_type, enc_hid_size):
        if enc_type == "bow":
            bow_encode = BowEncoder()
            return bow_encode
        elif enc_type == "cnn":
            cnn_encode = CNNEncoder(ksize=enc_hid_size)
            return cnn_encode
        elif enc_type == "gru":
            rnn_encode = GrnnEncoder(hidden_size=enc_hid_size)
            return rnn_encode


class MultiviewSimnet(object):
    """ multi-view simnet """

    def __init__(self, embedding_size, embedding_dim, hidden_size):
        self.embedding_size = embedding_size
        self.embedding_dim = embedding_dim
        self.emb_shape = [self.embedding_size, self.embedding_dim]
        self.hidden_size = hidden_size
        self.margin = 0.1

    def set_query_encoder(self, encoders):
        self.query_encoders = encoders

    def set_title_encoder(self, encoders):
        self.title_encoders = encoders

    def get_correct(self, x, y):
        less = tensor.cast(cf.less_than(x, y), dtype='float32')
        correct = nn.reduce_sum(less)
        return correct

    def train_net(self):
        # input fields for query, pos_title, neg_title
        q_slots = [
            io.data(
                name="q%d" % i, shape=[1], lod_level=1, dtype='int64')
            for i in range(len(self.query_encoders))
        ]
        pt_slots = [
            io.data(
                name="pt%d" % i, shape=[1], lod_level=1, dtype='int64')
            for i in range(len(self.title_encoders))
        ]
        nt_slots = [
            io.data(
                name="nt%d" % i, shape=[1], lod_level=1, dtype='int64')
            for i in range(len(self.title_encoders))
        ]

        # lookup embedding for each slot
        q_embs = [
            nn.embedding(
                input=query, size=self.emb_shape, param_attr="emb.w")
            for query in q_slots
        ]
        pt_embs = [
            nn.embedding(
                input=title, size=self.emb_shape, param_attr="emb.w")
            for title in pt_slots
        ]
        nt_embs = [
            nn.embedding(
                input=title, size=self.emb_shape, param_attr="emb.w")
            for title in nt_slots
        ]

        # encode each embedding field with encoder
        q_encodes = [
            self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs)
        ]
        pt_encodes = [
            self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs)
        ]
        nt_encodes = [
            self.title_encoders[i].forward(emb) for i, emb in enumerate(nt_embs)
        ]

        # concat multi view for query, pos_title, neg_title
        q_concat = nn.concat(q_encodes)
        pt_concat = nn.concat(pt_encodes)
        nt_concat = nn.concat(nt_encodes)

        # projection of hidden layer
        q_hid = nn.fc(q_concat, size=self.hidden_size, param_attr='q_fc.w')
        pt_hid = nn.fc(pt_concat, size=self.hidden_size, param_attr='t_fc.w')
        nt_hid = nn.fc(nt_concat, size=self.hidden_size, param_attr='t_fc.w')

        # cosine of hidden layers
        cos_pos = nn.cos_sim(q_hid, pt_hid)
        cos_neg = nn.cos_sim(q_hid, nt_hid)

        # pairwise hinge_loss
        loss_part1 = nn.elementwise_sub(
            tensor.fill_constant_batch_size_like(
                input=cos_pos,
                shape=[-1, 1],
                value=self.margin,
                dtype='float32'),
            cos_pos)

        loss_part2 = nn.elementwise_add(loss_part1, cos_neg)

        loss_part3 = nn.elementwise_max(
            tensor.fill_constant_batch_size_like(
                input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
            loss_part2)

        avg_cost = nn.mean(loss_part3)
        correct = self.get_correct(cos_pos, cos_neg)

        return q_slots + pt_slots + nt_slots, avg_cost, correct

    def pred_net(self, query_fields, pos_title_fields, neg_title_fields):
        q_slots = [
            io.data(
                name="q%d" % i, shape=[1], lod_level=1, dtype='int64')
            for i in range(len(self.query_encoders))
        ]
        pt_slots = [
            io.data(
                name="pt%d" % i, shape=[1], lod_level=1, dtype='int64')
            for i in range(len(self.title_encoders))
        ]
        # lookup embedding for each slot
        q_embs = [
            nn.embedding(
                input=query, size=self.emb_shape, param_attr="emb.w")
            for query in q_slots
        ]
        pt_embs = [
            nn.embedding(
                input=title, size=self.emb_shape, param_attr="emb.w")
            for title in pt_slots
        ]
        # encode each embedding field with encoder
        q_encodes = [
            self.query_encoder[i].forward(emb) for i, emb in enumerate(q_embs)
        ]
        pt_encodes = [
            self.title_encoders[i].forward(emb) for i, emb in enumerate(pt_embs)
        ]
        # concat multi view for query, pos_title, neg_title
        q_concat = nn.concat(q_encodes)
        pt_concat = nn.concat(pt_encodes)
        # projection of hidden layer
        q_hid = nn.fc(q_concat, size=self.hidden_size, param_attr='q_fc.w')
        pt_hid = nn.fc(pt_concat, size=self.hidden_size, param_attr='t_fc.w')
        # cosine of hidden layers
        cos = nn.cos_sim(q_hid, pt_hid)
        return cos