train.py 5.0 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import sys
import logging
import time
import numpy as np
import argparse
import paddle.fluid as fluid
import paddle
import time
import network
import reader
import random

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser("din")
    parser.add_argument(
        '--config_path', type=str, default='data/config.txt', help='dir of config')
    parser.add_argument(
        '--train_dir', type=str, default='data/paddle_train.txt', help='dir of train file')
    parser.add_argument(
        '--model_dir', type=str, default='din_amazon', help='dir of saved model')
    parser.add_argument(
        '--batch_size', type=int, default=16, help='number of batch size')
    parser.add_argument(
        '--epoch_num', type=int, default=200, help='number of epoch')
    parser.add_argument(
        '--use_cuda', type=int, default=0, help='whether to use gpu')
    parser.add_argument(
        '--parallel', type=int, default=0, help='whether to use parallel executor')
    parser.add_argument(
        '--base_lr', type=float, default=0.85, help='based learning rate')
    parser.add_argument(
        '--num_devices', type=int, default=1, help='Number of GPU devices')
    args = parser.parse_args()
    return args


def train():
    args = parse_args()

    config_path = args.config_path
    train_path = args.train_dir
    epoch_num = args.epoch_num
    use_cuda = True if args.use_cuda else False
    use_parallel = True if args.parallel else False

    logger.info("reading data begins")
    user_count, item_count, cat_count = reader.config_read(config_path)
    data_reader, max_len = reader.prepare_reader(train_path, args.batch_size *
                                                 args.num_devices)
    logger.info("reading data completes")

    avg_cost, pred = network.network(item_count, cat_count, max_len)
    fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm(
        clip_norm=5.0))
    base_lr = args.base_lr
    boundaries = [410000]
    values = [base_lr, 0.2]
    sgd_optimizer = fluid.optimizer.SGD(
        learning_rate=fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values))
    sgd_optimizer.minimize(avg_cost)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    feeder = fluid.DataFeeder(
        feed_list=[
            "hist_item_seq", "hist_cat_seq", "target_item", "target_cat",
            "label", "mask", "target_item_seq", "target_cat_seq"
        ],
        place=place)
    if use_parallel:
        train_exe = fluid.ParallelExecutor(
            use_cuda=use_cuda, loss_name=avg_cost.name)
    else:
        train_exe = exe

    logger.info("train begins")

    global_step = 0
    PRINT_STEP = 1000

    start_time = time.time()
    loss_sum = 0.0
    for id in range(epoch_num):
        epoch = id + 1
        for data in data_reader():
            global_step += 1
            results = train_exe.run(feed=feeder.feed(data),
                                    fetch_list=[avg_cost.name, pred.name],
                                    return_numpy=True)
            loss_sum += results[0].mean()

            if global_step % PRINT_STEP == 0:
                logger.info(
                    "epoch: %d\tglobal_step: %d\ttrain_loss: %.4f\t\ttime: %.2f"
                    % (epoch, global_step, loss_sum / PRINT_STEP,
                       time.time() - start_time))
                start_time = time.time()
                loss_sum = 0.0

                if (global_step > 400000 and global_step % PRINT_STEP == 0) or (
                        global_step < 400000 and global_step % 50000 == 0):
                    save_dir = args.model_dir + "/global_step_" + str(
                        global_step)
                    feed_var_name = [
                        "hist_item_seq", "hist_cat_seq", "target_item",
                        "target_cat", "label", "mask", "target_item_seq",
                        "target_cat_seq"
                    ]
                    fetch_vars = [avg_cost, pred]
                    fluid.io.save_inference_model(save_dir, feed_var_name,
                                                  fetch_vars, exe)
                    logger.info("model saved in " + save_dir)


if __name__ == "__main__":
    train()