cluster_train.py 5.9 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
import sys
import logging
import time
import numpy as np
import argparse
import paddle.fluid as fluid
import paddle
import time
import network
import reader
import random

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


def parse_args():
    parser = argparse.ArgumentParser("din")
    parser.add_argument(
        '--config_path',
        type=str,
        default='data/config.txt',
        help='dir of config')
    parser.add_argument(
        '--train_dir',
        type=str,
        default='data/paddle_train.txt',
        help='dir of train file')
    parser.add_argument(
        '--model_dir',
        type=str,
        default='din_amazon/',
        help='dir of saved model')
    parser.add_argument(
        '--batch_size', type=int, default=16, help='number of batch size')
    parser.add_argument(
        '--epoch_num', type=int, default=200, help='number of epoch')
    parser.add_argument(
        '--use_cuda', type=int, default=0, help='whether to use gpu')
    parser.add_argument(
        '--parallel',
        type=int,
        default=0,
        help='whether to use parallel executor')
    parser.add_argument(
        '--base_lr', type=float, default=0.85, help='based learning rate')
    parser.add_argument(
        '--role', type=str, default='pserver', help='trainer or pserver')
    parser.add_argument(
        '--endpoints',
        type=str,
        default='127.0.0.1:6000',
        help='The pserver endpoints, like: 127.0.0.1:6000, 127.0.0.1:6001')
    parser.add_argument(
        '--current_endpoint',
        type=str,
        default='127.0.0.1:6000',
        help='The current_endpoint')
    parser.add_argument(
        '--trainer_id',
        type=int,
        default=0,
        help='trainer id ,only trainer_id=0 save model')
    parser.add_argument(
        '--trainers',
        type=int,
        default=1,
        help='The num of trianers, (default: 1)')
    args = parser.parse_args()
    return args


def train():
    args = parse_args()

    config_path = args.config_path
    train_path = args.train_dir
    epoch_num = args.epoch_num
    use_cuda = True if args.use_cuda else False
    use_parallel = True if args.parallel else False

    logger.info("reading data begins")
    user_count, item_count, cat_count = reader.config_read(config_path)
    #data_reader, max_len = reader.prepare_reader(train_path, args.batch_size)
    logger.info("reading data completes")

    avg_cost, pred = network.network(item_count, cat_count, 433)
    #fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0))
    base_lr = args.base_lr
    boundaries = [410000]
    values = [base_lr, 0.2]
    sgd_optimizer = fluid.optimizer.SGD(
        learning_rate=fluid.layers.piecewise_decay(
            boundaries=boundaries, values=values))
    sgd_optimizer.minimize(avg_cost)

    def train_loop(main_program):
        data_reader, max_len = reader.prepare_reader(train_path,
                                                     args.batch_size)
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        feeder = fluid.DataFeeder(
            feed_list=[
                "hist_item_seq", "hist_cat_seq", "target_item", "target_cat",
                "label", "mask", "target_item_seq", "target_cat_seq"
            ],
            place=place)
        if use_parallel:
            train_exe = fluid.ParallelExecutor(
                use_cuda=use_cuda,
                loss_name=avg_cost.name,
                main_program=main_program)
        else:
            train_exe = exe
        logger.info("train begins")
        global_step = 0
        PRINT_STEP = 1000

        start_time = time.time()
        loss_sum = 0.0
        for id in range(epoch_num):
            epoch = id + 1
            for data in data_reader():
                global_step += 1
                results = train_exe.run(main_program,
                                        feed=feeder.feed(data),
                                        fetch_list=[avg_cost.name, pred.name],
                                        return_numpy=True)
                loss_sum += results[0].mean()

                if global_step % PRINT_STEP == 0:
                    logger.info(
                        "epoch: %d\tglobal_step: %d\ttrain_loss: %.4f\t\ttime: %.2f"
                        % (epoch, global_step, loss_sum / PRINT_STEP,
                           time.time() - start_time))
                    start_time = time.time()
                    loss_sum = 0.0

                    if (global_step > 400000 and
                            global_step % PRINT_STEP == 0) or (
                                global_step < 400000 and
                                global_step % 50000 == 0):
                        save_dir = args.model_dir + "/global_step_" + str(
                            global_step)
                        feed_var_name = [
                            "hist_item_seq", "hist_cat_seq", "target_item",
                            "target_cat", "label", "mask", "target_item_seq",
                            "target_cat_seq"
                        ]
                        fetch_vars = [avg_cost, pred]
                        fluid.io.save_inference_model(save_dir, feed_var_name,
                                                      fetch_vars, exe)
        train_exe.close()

    t = fluid.DistributeTranspiler()
    t.transpile(
        args.trainer_id, pservers=args.endpoints, trainers=args.trainers)
    if args.role == "pserver":
        logger.info("run psever")
        prog, startup = t.get_pserver_programs(args.current_endpoint)
        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(startup)
        exe.run(prog)
    elif args.role == "trainer":
        logger.info("run trainer")
        train_loop(t.get_trainer_program())


if __name__ == "__main__":
    train()