train.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
# -*- coding: utf-8 -*-
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import logging
import random
import math
import contextlib

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.profiler as profiler
from paddle.fluid.executor import Executor

import reader

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")

from args import *
from base_model import BaseModel
from attention_model import AttentionModel
import logging
import pickle


@contextlib.contextmanager
def profile_context(profile=True):
    if profile:
        with profiler.profiler('All', 'total', 'seq2seq.profile'):
            yield
    else:
        yield


def main():
    args = parse_args()
    print(args)
    num_layers = args.num_layers
    src_vocab_size = args.src_vocab_size
    tar_vocab_size = args.tar_vocab_size
    batch_size = args.batch_size
    dropout = args.dropout
    init_scale = args.init_scale
    max_grad_norm = args.max_grad_norm
    hidden_size = args.hidden_size

    if args.enable_ce:
        fluid.default_main_program().random_seed = 102
        framework.default_startup_program().random_seed = 102

    train_program = fluid.Program()
    startup_program = fluid.Program()

    with fluid.program_guard(train_program, startup_program):
        # Training process

        if args.attention:
            model = AttentionModel(
                hidden_size,
                src_vocab_size,
                tar_vocab_size,
                batch_size,
                num_layers=num_layers,
                init_scale=init_scale,
                dropout=dropout)
        else:
            model = BaseModel(
                hidden_size,
                src_vocab_size,
                tar_vocab_size,
                batch_size,
                num_layers=num_layers,
                init_scale=init_scale,
                dropout=dropout)
        loss = model.build_graph()
        inference_program = train_program.clone(for_test=True)
        fluid.clip.set_gradient_clip(clip=fluid.clip.GradientClipByGlobalNorm(
            clip_norm=max_grad_norm))
        lr = args.learning_rate
        opt_type = args.optimizer
        if opt_type == "sgd":
            optimizer = fluid.optimizer.SGD(lr)
        elif opt_type == "adam":
            optimizer = fluid.optimizer.Adam(lr)
        else:
            print("only support [sgd|adam]")
            raise Exception("opt type not support")

        optimizer.minimize(loss)

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = Executor(place)
    exe.run(startup_program)

    device_count = len(fluid.cuda_places()) if args.use_gpu else len(
        fluid.cpu_places())

    CompiledProgram = fluid.CompiledProgram(train_program).with_data_parallel(
        loss_name=loss.name)

    train_data_prefix = args.train_data_prefix
    eval_data_prefix = args.eval_data_prefix
    test_data_prefix = args.test_data_prefix
    vocab_prefix = args.vocab_prefix
    src_lang = args.src_lang
    tar_lang = args.tar_lang
    print("begin to load data")
    raw_data = reader.raw_data(src_lang, tar_lang, vocab_prefix,
                               train_data_prefix, eval_data_prefix,
                               test_data_prefix, args.max_len)
    print("finished load data")
    train_data, valid_data, test_data, _ = raw_data

    def prepare_input(batch, epoch_id=0, with_lr=True):
        src_ids, src_mask, tar_ids, tar_mask = batch
        res = {}
        src_ids = src_ids.reshape((src_ids.shape[0], src_ids.shape[1]))
        in_tar = tar_ids[:, :-1]
        label_tar = tar_ids[:, 1:]

        in_tar = in_tar.reshape((in_tar.shape[0], in_tar.shape[1]))
        label_tar = label_tar.reshape(
            (label_tar.shape[0], label_tar.shape[1], 1))

        res['src'] = src_ids
        res['tar'] = in_tar
        res['label'] = label_tar
        res['src_sequence_length'] = src_mask
        res['tar_sequence_length'] = tar_mask

        return res, np.sum(tar_mask)

    # get train epoch size
    def eval(data, epoch_id=0):
        eval_data_iter = reader.get_data_iter(data, batch_size, mode='eval')
        total_loss = 0.0
        word_count = 0.0
        for batch_id, batch in enumerate(eval_data_iter):
            input_data_feed, word_num = prepare_input(
                batch, epoch_id, with_lr=False)
            fetch_outs = exe.run(inference_program,
                                 feed=input_data_feed,
                                 fetch_list=[loss.name],
                                 use_program_cache=False)

            cost_train = np.array(fetch_outs[0])

            total_loss += cost_train * batch_size
            word_count += word_num

        ppl = np.exp(total_loss / word_count)

        return ppl

    def train():
        ce_time = []
        ce_ppl = []
        max_epoch = args.max_epoch
        for epoch_id in range(max_epoch):
            start_time = time.time()
            if args.enable_ce:
                train_data_iter = reader.get_data_iter(
                    train_data, batch_size, enable_ce=True)
            else:
                train_data_iter = reader.get_data_iter(train_data, batch_size)

            total_loss = 0
            word_count = 0.0
            batch_times = []
            for batch_id, batch in enumerate(train_data_iter):
                batch_start_time = time.time()
                input_data_feed, word_num = prepare_input(
                    batch, epoch_id=epoch_id)
                word_count += word_num
                fetch_outs = exe.run(program=CompiledProgram,
                                     feed=input_data_feed,
                                     fetch_list=[loss.name],
                                     use_program_cache=True)

                cost_train = np.mean(fetch_outs[0])
                # print(cost_train)
                total_loss += cost_train * batch_size
                batch_end_time = time.time()
                batch_time = batch_end_time - batch_start_time
                batch_times.append(batch_time)

                if batch_id > 0 and batch_id % 100 == 0:
                    print("-- Epoch:[%d]; Batch:[%d]; Time: %.5f s; ppl: %.5f" %
                          (epoch_id, batch_id, batch_time,
                           np.exp(total_loss / word_count)))
                    ce_ppl.append(np.exp(total_loss / word_count))
                    total_loss = 0.0
                    word_count = 0.0

            end_time = time.time()
            epoch_time = end_time - start_time
            ce_time.append(epoch_time)
            print(
                "\nTrain epoch:[%d]; Epoch Time: %.5f; avg_time: %.5f s/step\n"
                % (epoch_id, epoch_time, sum(batch_times) / len(batch_times)))

            if not args.profile:
                dir_name = os.path.join(args.model_path,
                                        "epoch_" + str(epoch_id))
                print("begin to save", dir_name)
                fluid.io.save_params(exe, dir_name, main_program=train_program)
                print("save finished")
                dev_ppl = eval(valid_data)
                print("dev ppl", dev_ppl)
                test_ppl = eval(test_data)
                print("test ppl", test_ppl)

        if args.enable_ce:
            card_num = get_cards()
            _ppl = 0
            _time = 0
            try:
                _time = ce_time[-1]
                _ppl = ce_ppl[-1]
            except:
                print("ce info error")
            print("kpis\ttrain_duration_card%s\t%s" % (card_num, _time))
            print("kpis\ttrain_ppl_card%s\t%f" % (card_num, _ppl))

    with profile_context(args.profile):
        train()


def get_cards():
    num = 0
    cards = os.environ.get('CUDA_VISIBLE_DEVICES', '')
    if cards != '':
        num = len(cards.split(","))
    return num


def check_version():
    """
    Log error and exit when the installed version of paddlepaddle is
    not satisfied.
    """
    err = "PaddlePaddle version 1.6 or higher is required, " \
          "or a suitable develop version is satisfied as well. \n" \
          "Please make sure the version is good with your code." \

    try:
        fluid.require_version('1.6.0')
    except Exception as e:
        logger.error(err)
        sys.exit(1)


if __name__ == '__main__':
    check_version()
    main()