actor_critic.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
import argparse
import gym
import numpy as np
from itertools import count
from collections import namedtuple
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.dygraph.nn as nn
import paddle.fluid.framework as framework

parser = argparse.ArgumentParser(description='PyTorch REINFORCE example')
parser.add_argument(
    '--gamma',
    type=float,
    default=0.99,
    metavar='G',
    help='discount factor (default: 0.99)')
parser.add_argument(
    '--seed',
    type=int,
    default=543,
    metavar='N',
    help='random seed (default: 543)')
parser.add_argument(
    '--render', action='store_true', help='render the environment')
parser.add_argument(
    '--log-interval',
    type=int,
    default=10,
    metavar='N',
    help='interval between training status logs (default: 10)')
args = parser.parse_args()

env = gym.make('CartPole-v0')
env.seed(args.seed)

SavedAction = namedtuple('SavedAction', ['log_prob', 'value'])


class Policy(fluid.dygraph.Layer):
    def __init__(self, name_scope):
        super(Policy, self).__init__(name_scope)

        self.affine1 = nn.FC(self.full_name(), size=128)
        self.action_head = nn.FC(self.full_name(), size=2)
        self.value_head = nn.FC(self.full_name(), size=1)

        self.saved_actions = []
        self.rewards = []

    def forward(self, x):
        x = fluid.layers.reshape(x, shape=[1, 4])
        x = self.affine1(x)
        x = fluid.layers.relu(x)

        action_scores = self.action_head(x)
        state_values = self.value_head(x)

        return fluid.layers.softmax(action_scores, axis=-1), state_values


with fluid.dygraph.guard():
    policy = Policy("PolicyModel")

    eps = np.finfo(np.float32).eps.item()
    optimizer = fluid.optimizer.AdamOptimizer(learning_rate=3e-2)

    def get_mean_and_std(values=[]):
        n = 0.
        s = 0.
        for val in values:
            s += val
            n += 1
        mean = s / n

        std = 0.
        for val in values:
            std += (val - mean) * (val - mean)
        std /= n
        std = math.sqrt(std)

        return mean, std

    def sample_action(probs):
        sample = np.random.random()
        idx = 0

        while idx < len(probs) and sample > probs[idx]:
            sample -= probs[idx]
            idx += 1
        mask = [0.] * len(probs)
        mask[idx] = 1.

        return idx, np.array([mask]).astype("float32")

    def choose_best_action(probs):
        idx = 0 if probs[0] > probs[1] else 1
        mask = [1., 0.] if idx == 0 else [0., 1.]

        return idx, np.array([mask]).astype("float32")

    def select_action(state):
        state = fluid.dygraph.base.to_variable(state)
        state.stop_gradient = True
        probs, state_value = policy(state)
        np_probs = probs.numpy()

        action, _mask = sample_action(np_probs[0])

        mask = fluid.dygraph.base.to_variable(_mask)
        mask.stop_gradient = True

        loss_probs = fluid.layers.log(probs)
        loss_probs = fluid.layers.elementwise_mul(loss_probs, mask)
        loss_probs = fluid.layers.reduce_sum(loss_probs, dim=-1)

        policy.saved_actions.append(SavedAction(loss_probs, state_value))

        return action

    def finish_episode():
        R = 0
        saved_actions = policy.saved_actions
        policy_losses = []
        value_losses = []
        returns = []
        for r in policy.rewards[::-1]:
            R = r + args.gamma * R
            returns.insert(0, R)

        mean, std = get_mean_and_std(returns)
        returns = np.array(returns).astype("float32")
        returns = (returns - mean) / (std + eps)

        for (log_prob, value), R in zip(saved_actions, returns):
            advantage = R - value[0][0]

            log_prob_numpy = log_prob.numpy()
            R_numpy = np.ones_like(log_prob_numpy).astype("float32")
            _R = -1 * advantage * R_numpy
            _R = fluid.dygraph.base.to_variable(_R)
            _R.stop_gradient = True

            policy_loss = fluid.layers.elementwise_mul(_R, log_prob)
            policy_losses.append(policy_loss)

            _R2 = np.ones_like(value.numpy()).astype("float32") * R
            _R2 = fluid.dygraph.base.to_variable(_R2)
            _R2.stop_gradient = True

            value_loss = fluid.layers.smooth_l1(value, _R2, sigma=1.0)
            value_losses.append(value_loss)

        all_policy_loss = fluid.layers.concat(policy_losses)
        all_policy_loss = fluid.layers.reduce_sum(all_policy_loss)

        all_value_loss = fluid.layers.concat(value_losses)
        all_value_loss = fluid.layers.reduce_sum(all_value_loss)

        loss = all_policy_loss + all_value_loss

        loss.backward()
        optimizer.minimize(loss)

        policy.clear_gradients()
        del policy.rewards[:]
        del policy.saved_actions[:]

        return returns

    running_reward = 10
    for i_episode in count(1):
        state, ep_reward = env.reset(), 0
        for t in range(1, 10000):  # Don't infinite loop while learning
            state = np.array(state).astype("float32")
            action = select_action(state)
            state, reward, done, _ = env.step(action)

            if args.render:
                env.render()

            policy.rewards.append(reward)
            ep_reward += reward

            if done:
                break

        running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward
        returns = finish_episode()
        if i_episode % args.log_interval == 0:
            print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'.
                  format(i_episode, ep_reward, running_reward))
            #print(returns)
        if running_reward > env.spec.reward_threshold:
            print("Solved! Running reward is now {} and "
                  "the last episode runs to {} time steps!".format(
                      running_reward, t))
            break