reader.py 6.3 KB
Newer Older
J
jerrywgz 已提交
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
J
jerrywgz 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.utils.image_util import *
import random
from PIL import Image
from PIL import ImageDraw
import numpy as np
import xml.etree.ElementTree
import os
import time
import copy
import six
25
from collections import deque
J
jerrywgz 已提交
26 27 28

from roidbs import JsonDataset
import data_utils
J
jerrywgz 已提交
29
from config import cfg
J
jerrywgz 已提交
30 31 32 33 34 35 36 37 38
import segm_utils


def roidb_reader(roidb, mode):
    im, im_scales = data_utils.get_image_blob(roidb, mode)
    im_id = roidb['id']
    im_height = np.round(roidb['height'] * im_scales)
    im_width = np.round(roidb['width'] * im_scales)
    im_info = np.array([im_height, im_width, im_scales], dtype=np.float32)
39
    if mode == 'val' or mode == 'infer':
J
jerrywgz 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
        return im, im_info, im_id

    gt_boxes = roidb['gt_boxes'].astype('float32')
    gt_classes = roidb['gt_classes'].astype('int32')
    is_crowd = roidb['is_crowd'].astype('int32')
    segms = roidb['segms']

    outs = (im, gt_boxes, gt_classes, is_crowd, im_info, im_id)

    if cfg.MASK_ON:
        gt_masks = []
        valid = True
        segms = roidb['segms']
        assert len(segms) == is_crowd.shape[0]
        for i in range(len(roidb['segms'])):
            segm, iscrowd = segms[i], is_crowd[i]
            gt_segm = []
            if iscrowd:
                gt_segm.append([[0, 0]])
            else:
                for poly in segm:
                    if len(poly) == 0:
                        valid = False
                        break
                    gt_segm.append(np.array(poly).reshape(-1, 2))
            if (not valid) or len(gt_segm) == 0:
                break
            gt_masks.append(gt_segm)
        outs = outs + (gt_masks, )
    return outs
J
jerrywgz 已提交
70 71


J
jerrywgz 已提交
72
def coco(mode,
73 74 75 76
         batch_size=None,
         total_batch_size=None,
         padding_total=False,
         shuffle=False):
J
jerrywgz 已提交
77 78
    cfg.mean_value = np.array(cfg.pixel_means)[np.newaxis,
                                               np.newaxis, :].astype('float32')
79
    total_batch_size = total_batch_size if total_batch_size else batch_size
J
jerrywgz 已提交
80 81
    if mode != 'infer':
        assert total_batch_size % batch_size == 0
82
    json_dataset = JsonDataset(mode)
J
jerrywgz 已提交
83 84
    roidbs = json_dataset.get_roidb()

J
jerrywgz 已提交
85
    print("{} on {} with {} roidbs".format(mode, cfg.dataset, len(roidbs)))
J
jerrywgz 已提交
86

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    def padding_minibatch(batch_data):
        if len(batch_data) == 1:
            return batch_data

        max_shape = np.array([data[0].shape for data in batch_data]).max(axis=0)

        padding_batch = []
        for data in batch_data:
            im_c, im_h, im_w = data[0].shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = data[0]
            padding_batch.append((padding_im, ) + data[1:])
        return padding_batch

102 103
    def reader():
        if mode == "train":
J
jerrywgz 已提交
104 105 106 107
            if shuffle:
                roidb_perm = deque(np.random.permutation(roidbs))
            else:
                roidb_perm = deque(roidbs)
108
            roidb_cur = 0
J
jerrywgz 已提交
109
            count = 0
110
            batch_out = []
J
jerrywgz 已提交
111
            device_num = total_batch_size / batch_size
112 113 114 115 116
            while True:
                roidb = roidb_perm[0]
                roidb_cur += 1
                roidb_perm.rotate(-1)
                if roidb_cur >= len(roidbs):
J
jerrywgz 已提交
117 118 119 120
                    if shuffle:
                        roidb_perm = deque(np.random.permutation(roidbs))
                    else:
                        roidb_perm = deque(roidbs)
J
jerrywgz 已提交
121
                    roidb_cur = 0
J
jerrywgz 已提交
122 123 124
                # im, gt_boxes, gt_classes, is_crowd, im_info, im_id, gt_masks
                datas = roidb_reader(roidb, mode)
                if datas[1].shape[0] == 0:
125
                    continue
J
jerrywgz 已提交
126 127 128 129
                if cfg.MASK_ON:
                    if len(datas[-1]) != datas[1].shape[0]:
                        continue
                batch_out.append(datas)
130 131 132
                if not padding_total:
                    if len(batch_out) == batch_size:
                        yield padding_minibatch(batch_out)
J
jerrywgz 已提交
133
                        count += 1
134 135 136 137
                        batch_out = []
                else:
                    if len(batch_out) == total_batch_size:
                        batch_out = padding_minibatch(batch_out)
J
jerrywgz 已提交
138
                        for i in range(device_num):
139 140 141 142 143
                            sub_batch_out = []
                            for j in range(batch_size):
                                sub_batch_out.append(batch_out[i * batch_size +
                                                               j])
                            yield sub_batch_out
J
jerrywgz 已提交
144
                            count += 1
145 146
                            sub_batch_out = []
                        batch_out = []
J
jerrywgz 已提交
147 148
                iter_id = count // device_num
                if iter_id >= cfg.max_iter:
J
jerrywgz 已提交
149
                    return
150
        elif mode == "val":
151 152
            batch_out = []
            for roidb in roidbs:
J
jerrywgz 已提交
153 154
                im, im_info, im_id = roidb_reader(roidb, mode)
                batch_out.append((im, im_info, im_id))
155 156 157
                if len(batch_out) == batch_size:
                    yield batch_out
                    batch_out = []
J
jerrywgz 已提交
158 159 160 161 162
            if len(batch_out) != 0:
                yield batch_out

        else:
            for roidb in roidbs:
J
jerrywgz 已提交
163
                if cfg.image_name not in roidb['image']:
J
jerrywgz 已提交
164
                    continue
J
jerrywgz 已提交
165 166 167
                im, im_info, im_id = roidb_reader(roidb, mode)
                batch_out = [(im, im_info, im_id)]
                yield batch_out
J
jerrywgz 已提交
168 169 170 171

    return reader


J
jerrywgz 已提交
172
def train(batch_size, total_batch_size=None, padding_total=False, shuffle=True):
173
    return coco(
J
jerrywgz 已提交
174
        'train', batch_size, total_batch_size, padding_total, shuffle=shuffle)
J
jerrywgz 已提交
175 176


J
jerrywgz 已提交
177
def test(batch_size, total_batch_size=None, padding_total=False):
178
    return coco('val', batch_size, total_batch_size, shuffle=False)
J
jerrywgz 已提交
179 180


J
jerrywgz 已提交
181 182
def infer():
    return coco('infer')