## 0. FastDeployFastDeploy is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with out-of-the-box and unified experience, end-to-end optimization for over 150+ Text, Vision, Speech and Cross-modal AI models. FastDeploy Supports AI model deployment on**X86 CPU、NVIDIA GPU、ARM CPU、XPU、NPU、IPU** etc. You can switch different inference backends and hardware with a single line of code.Deploying AI model in 3 steps with FastDeploy: (1)Install FastDeploy SDK; (2)Use FastDeploy's API to implement the deployment code; (3) Deploy.**Notes** : This document downloads FastDeploy examples to complete the high performance deployment experience; only X86 CPUs, NVIDIA GPUs are shown for reasoning and GPU environments are ready by default (e.g. CUDA >= 11.2, etc.), if you need to deploy AI model on other hardware or learn about FastDeploy's full capabilities, please refer to [FastDeploy GitHub](https://github.com/PaddlePaddle/FastDeploy).## 1. Install FastDeploy SDK```pip install fastdeploy-gpu-python==0.0.0 -f https://www.paddlepaddle.org.cn/whl/fastdeploy_nightly_build.html```## 2. Run Deployment Example```# download deployment examplegit clone https://github.com/PaddlePaddle/FastDeploy.gitcd FastDeploy/examples/vision/detection/paddledetection/python/# download PPYOLOE model and test imagewget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgzwget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpgtar xvf ppyoloe_crn_l_300e_coco.tgz# CPU deploymentpython infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device cpu# GPU deploymentpython infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu# TensorRT inference on GPU (note: if you run TensorRT inference the first time, there is a serialization of the model, which is time-consuming and requires patience)python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu --use_trt True```The results of the completed visualisation are shown below:<divalign="center"><imgsrc="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg",width=480px,height=320px/></div>