## 0. FastDeployFastDeploy is an Easy-to-use and High Performance AI model deployment toolkit for Cloud, Mobile and Edge with out-of-the-box and unified experience, end-to-end optimization for over 150+ Text, Vision, Speech and Cross-modal AI models. FastDeploy Supports AI model deployment on**X86 CPU、NVIDIA GPU、ARM CPU、XPU、NPU、IPU** etc. You can switch different inference backends and hardware with a single line of code.Deploying AI model in 3 steps with FastDeploy: (1)Install FastDeploy SDK; (2)Use FastDeploy's API to implement the deployment code; (3) Deploy.**Notes** : This document downloads FastDeploy examples to complete the high performance deployment experience; only X86 CPUs, NVIDIA GPUs are shown for reasoning and GPU environments are ready by default (e.g. CUDA >= 11.2, etc.), if you need to deploy AI model on other hardware or learn about FastDeploy's full capabilities, please refer to [FastDeploy GitHub](https://github.com/PaddlePaddle/FastDeploy).## 1. Install FastDeploy SDK```pip install fastdeploy-gpu-python==0.0.0 -f https://www.paddlepaddle.org.cn/whl/fastdeploy_nightly_build.html```## 2. Run Deployment Example```# download deployment examplegit clone https://github.com/PaddlePaddle/FastDeploy.gitcd FastDeploy/examples/vision/keypointdetection/tiny_pose/python# download TinyPose model and test imagewget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgztar -xvf PP_TinyPose_256x192_infer.tgzwget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg# CPU deploymentpython pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device cpu# GPU deploymentpython pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu# TensorRT inference on GPU (note: if you run TensorRT inference the first time, there is a serialization of the model, which is time-consuming and requires patience)python pptinypose_infer.py --tinypose_model_dir PP_TinyPose_256x192_infer --image hrnet_demo.jpg --device gpu --use_trt True```The results of the completed visualisation are shown below:<divalign="center"><imgsrc="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg",width=359px,height=423px/></div>