bert.py 8.6 KB
Newer Older
0
0YuanZhang0 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import six
import json
import numpy as np
import paddle.fluid as fluid

0
0YuanZhang0 已提交
25 26
from pdnlp.nets.transformer_encoder import encoder as encoder
from pdnlp.nets.transformer_encoder import pre_process_layer as pre_process_layer
0
0YuanZhang0 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231


class BertModel(object):
    def __init__(self,
                 src_ids,
                 position_ids,
                 sentence_ids,
                 input_mask,
                 config,
                 weight_sharing=True,
                 use_fp16=False,
                 model_name=''):

        self._emb_size = config["hidden_size"]
        self._n_layer = config["num_hidden_layers"]
        self._n_head = config["num_attention_heads"]
        self._voc_size = config["vocab_size"]
        self._max_position_seq_len = config["max_position_embeddings"]
        self._sent_types = config["type_vocab_size"]
        self._hidden_act = config["hidden_act"]
        self._prepostprocess_dropout = config["hidden_dropout_prob"]
        self._attention_dropout = config["attention_probs_dropout_prob"]
        self._weight_sharing = weight_sharing

        self.model_name = model_name

        self._word_emb_name = self.model_name + "word_embedding"
        self._pos_emb_name = self.model_name + "pos_embedding"
        self._sent_emb_name = self.model_name + "sent_embedding"
        self._dtype = "float16" if use_fp16 else "float32"

        # Initialize all weigths by truncated normal initializer, and all biases 
        # will be initialized by constant zero by default.
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=config["initializer_range"])

        self._build_model(src_ids, position_ids, sentence_ids, input_mask,
                          config)

    def _build_model(self, src_ids, position_ids, sentence_ids, input_mask,
                     config):
        # padding id in vocabulary must be set to 0
        emb_out = fluid.layers.embedding(
            input=src_ids,
            size=[self._voc_size, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._word_emb_name, initializer=self._param_initializer),
            is_sparse=False)

        self.emb_out = emb_out

        position_emb_out = fluid.layers.embedding(
            input=position_ids,
            size=[self._max_position_seq_len, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._pos_emb_name, initializer=self._param_initializer))

        self.position_emb_out = position_emb_out

        sent_emb_out = fluid.layers.embedding(
            sentence_ids,
            size=[self._sent_types, self._emb_size],
            dtype=self._dtype,
            param_attr=fluid.ParamAttr(
                name=self._sent_emb_name, initializer=self._param_initializer))

        self.sent_emb_out = sent_emb_out

        emb_out = emb_out + position_emb_out
        emb_out = emb_out + sent_emb_out

        emb_out = pre_process_layer(
            emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')

        if self._dtype == "float16":
            input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype)

        self_attn_mask = fluid.layers.matmul(
            x=input_mask, y=input_mask, transpose_y=True)

        self_attn_mask = fluid.layers.scale(
            x=self_attn_mask,
            scale=config["self_att_scale"],
            bias=-1.0,
            bias_after_scale=False)

        n_head_self_attn_mask = fluid.layers.stack(
            x=[self_attn_mask] * self._n_head, axis=1)

        n_head_self_attn_mask.stop_gradient = True

        self._enc_out = encoder(
            enc_input=emb_out,
            attn_bias=n_head_self_attn_mask,
            n_layer=self._n_layer,
            n_head=self._n_head,
            d_key=self._emb_size // self._n_head,
            d_value=self._emb_size // self._n_head,
            d_model=self._emb_size,
            d_inner_hid=self._emb_size * 4,
            prepostprocess_dropout=self._prepostprocess_dropout,
            attention_dropout=self._attention_dropout,
            relu_dropout=0,
            hidden_act=self._hidden_act,
            preprocess_cmd="",
            postprocess_cmd="dan",
            param_initializer=self._param_initializer,
            name=self.model_name + 'encoder')

    def get_sequence_output(self):
        return self._enc_out

    def get_pooled_output(self):
        """Get the first feature of each sequence for classification"""

        next_sent_feat = fluid.layers.slice(
            input=self._enc_out, axes=[1], starts=[0], ends=[1])
        next_sent_feat = fluid.layers.fc(
            input=next_sent_feat,
            size=self._emb_size,
            act="tanh",
            param_attr=fluid.ParamAttr(
                name=self.model_name + "pooled_fc.w_0",
                initializer=self._param_initializer),
            bias_attr="pooled_fc.b_0")
        return next_sent_feat

    def get_pretraining_output(self, mask_label, mask_pos, labels):
        """Get the loss & accuracy for pretraining"""

        mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')

        # extract the first token feature in each sentence
        next_sent_feat = self.get_pooled_output()
        reshaped_emb_out = fluid.layers.reshape(
            x=self._enc_out, shape=[-1, self._emb_size])
        # extract masked tokens' feature
        mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)

        # transform: fc
        mask_trans_feat = fluid.layers.fc(
            input=mask_feat,
            size=self._emb_size,
            act=self._hidden_act,
            param_attr=fluid.ParamAttr(
                name=self.model_name + 'mask_lm_trans_fc.w_0',
                initializer=self._param_initializer),
            bias_attr=fluid.ParamAttr(
                name=self.model_name + 'mask_lm_trans_fc.b_0'))
        # transform: layer norm 
        mask_trans_feat = pre_process_layer(
            mask_trans_feat, 'n', name=self.model_name + 'mask_lm_trans')

        mask_lm_out_bias_attr = fluid.ParamAttr(
            name=self.model_name + "mask_lm_out_fc.b_0",
            initializer=fluid.initializer.Constant(value=0.0))
        if self._weight_sharing:
            fc_out = fluid.layers.matmul(
                x=mask_trans_feat,
                y=fluid.default_main_program().global_block().var(
                    self._word_emb_name),
                transpose_y=True)
            fc_out += fluid.layers.create_parameter(
                shape=[self._voc_size],
                dtype=self._dtype,
                attr=mask_lm_out_bias_attr,
                is_bias=True)

        else:
            fc_out = fluid.layers.fc(
                input=mask_trans_feat,
                size=self._voc_size,
                param_attr=fluid.ParamAttr(
                    name=self.model_name + "mask_lm_out_fc.w_0",
                    initializer=self._param_initializer),
                bias_attr=mask_lm_out_bias_attr)

        mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
            logits=fc_out, label=mask_label)
        mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)

        next_sent_fc_out = fluid.layers.fc(
            input=next_sent_feat,
            size=2,
            param_attr=fluid.ParamAttr(
                name=self.model_name + "next_sent_fc.w_0",
                initializer=self._param_initializer),
            bias_attr=self.model_name + "next_sent_fc.b_0")

        next_sent_loss, next_sent_softmax = fluid.layers.softmax_with_cross_entropy(
            logits=next_sent_fc_out, label=labels, return_softmax=True)

        next_sent_acc = fluid.layers.accuracy(
            input=next_sent_softmax, label=labels)

        mean_next_sent_loss = fluid.layers.mean(next_sent_loss)

        loss = mean_next_sent_loss + mean_mask_lm_loss
        return next_sent_acc, mean_mask_lm_loss, loss


if __name__ == "__main__":
    print("hello wolrd!")