create_pretraining_data.py 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
# coding=utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Create masked LM/next sentence masked_lm TF examples for BERT."""
from __future__ import absolute_import, division, print_function, unicode_literals

import argparse
import logging
import os
import random
from io import open
import h5py
import numpy as np
from tqdm import tqdm

from paddlenlp.transformers import BertTokenizer
from paddlenlp.transformers.tokenizer_utils import convert_to_unicode

import random
import collections


class TrainingInstance(object):
    """A single training instance (sentence pair)."""
    def __init__(self, tokens, segment_ids, masked_lm_positions,
                 masked_lm_labels, is_random_next):
        self.tokens = tokens
        self.segment_ids = segment_ids
        self.is_random_next = is_random_next
        self.masked_lm_positions = masked_lm_positions
        self.masked_lm_labels = masked_lm_labels


def write_instance_to_example_file(instances, tokenizer, max_seq_length,
                                   max_predictions_per_seq, output_file):
    """Create TF example files from `TrainingInstance`s."""

    total_written = 0
    features = collections.OrderedDict()

    num_instances = len(instances)
    features["input_ids"] = np.zeros([num_instances, max_seq_length],
                                     dtype="int32")
    features["input_mask"] = np.zeros([num_instances, max_seq_length],
                                      dtype="int32")
    features["segment_ids"] = np.zeros([num_instances, max_seq_length],
                                       dtype="int32")
    features["masked_lm_positions"] = np.zeros(
        [num_instances, max_predictions_per_seq], dtype="int32")
    features["masked_lm_ids"] = np.zeros(
        [num_instances, max_predictions_per_seq], dtype="int32")
    features["next_sentence_labels"] = np.zeros(num_instances, dtype="int32")

    for inst_index, instance in enumerate(tqdm(instances)):
        input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
        input_mask = [1] * len(input_ids)
        segment_ids = list(instance.segment_ids)
        assert len(input_ids) <= max_seq_length

        while len(input_ids) < max_seq_length:
            input_ids.append(0)
            input_mask.append(0)
            segment_ids.append(0)

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        masked_lm_positions = list(instance.masked_lm_positions)
        masked_lm_ids = tokenizer.convert_tokens_to_ids(
            instance.masked_lm_labels)
        masked_lm_weights = [1.0] * len(masked_lm_ids)

        while len(masked_lm_positions) < max_predictions_per_seq:
            masked_lm_positions.append(0)
            masked_lm_ids.append(0)
            masked_lm_weights.append(0.0)

        next_sentence_label = 1 if instance.is_random_next else 0

        features["input_ids"][inst_index] = input_ids
        features["input_mask"][inst_index] = input_mask
        features["segment_ids"][inst_index] = segment_ids
        features["masked_lm_positions"][inst_index] = masked_lm_positions
        features["masked_lm_ids"][inst_index] = masked_lm_ids
        features["next_sentence_labels"][inst_index] = next_sentence_label

        total_written += 1

    print("saving data")
    f = h5py.File(output_file, 'w')
    f.create_dataset("input_ids",
                     data=features["input_ids"],
                     dtype='i4',
                     compression='gzip')
    f.create_dataset("input_mask",
                     data=features["input_mask"],
                     dtype='i1',
                     compression='gzip')
    f.create_dataset("segment_ids",
                     data=features["segment_ids"],
                     dtype='i1',
                     compression='gzip')
    f.create_dataset("masked_lm_positions",
                     data=features["masked_lm_positions"],
                     dtype='i4',
                     compression='gzip')
    f.create_dataset("masked_lm_ids",
                     data=features["masked_lm_ids"],
                     dtype='i4',
                     compression='gzip')
    f.create_dataset("next_sentence_labels",
                     data=features["next_sentence_labels"],
                     dtype='i1',
                     compression='gzip')
    f.flush()
    f.close()


def create_training_instances(input_files, tokenizer, max_seq_length,
                              dupe_factor, short_seq_prob, masked_lm_prob,
                              max_predictions_per_seq, rng):
    """Create `TrainingInstance`s from raw text."""
    all_documents = [[]]

    # Input file format:
    # (1) One sentence per line. These should ideally be actual sentences, not
    # entire paragraphs or arbitrary spans of text. (Because we use the
    # sentence boundaries for the "next sentence prediction" task).
    # (2) Blank lines between documents. Document boundaries are needed so
    # that the "next sentence prediction" task doesn't span between documents.
    for input_file in input_files:
        print("creating instance from {}".format(input_file))
        with open(input_file, "r") as reader:
            while True:
                line = convert_to_unicode(reader.readline())
                if not line:
                    break
                line = line.strip()

                # Empty lines are used as document delimiters
                if not line:
                    all_documents.append([])
                # tokens = tokenizer.tokenize(line)
                tokens = tokenizer(line)
                if tokens:
                    all_documents[-1].append(tokens)

    # Remove empty documents
    all_documents = [x for x in all_documents if x]
    rng.shuffle(all_documents)

    # vocab_words = list(tokenizer.vocab.keys())
    vocab_words = list(tokenizer.vocab.token_to_idx.keys())
    instances = []
    for _ in range(dupe_factor):
        for document_index in range(len(all_documents)):
            instances.extend(
                create_instances_from_document(all_documents, document_index,
                                               max_seq_length, short_seq_prob,
                                               masked_lm_prob,
                                               max_predictions_per_seq,
                                               vocab_words, rng))

    rng.shuffle(instances)
    return instances


def create_instances_from_document(all_documents, document_index,
                                   max_seq_length, short_seq_prob,
                                   masked_lm_prob, max_predictions_per_seq,
                                   vocab_words, rng):
    """Creates `TrainingInstance`s for a single document."""
    document = all_documents[document_index]

    # Account for [CLS], [SEP], [SEP]
    max_num_tokens = max_seq_length - 3

    # We *usually* want to fill up the entire sequence since we are padding
    # to `max_seq_length` anyways, so short sequences are generally wasted
    # computation. However, we *sometimes*
    # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
    # sequences to minimize the mismatch between pre-training and fine-tuning.
    # The `target_seq_length` is just a rough target however, whereas
    # `max_seq_length` is a hard limit.
    target_seq_length = max_num_tokens
    if rng.random() < short_seq_prob:
        target_seq_length = rng.randint(2, max_num_tokens)

    # We DON'T just concatenate all of the tokens from a document into a long
    # sequence and choose an arbitrary split point because this would make the
    # next sentence prediction task too easy. Instead, we split the input into
    # segments "A" and "B" based on the actual "sentences" provided by the user
    # input.
    instances = []
    current_chunk = []
    current_length = 0
    i = 0
    while i < len(document):
        segment = document[i]
        current_chunk.append(segment)
        current_length += len(segment)
        if i == len(document) - 1 or current_length >= target_seq_length:
            if current_chunk:
                # `a_end` is how many segments from `current_chunk` go into the `A`
                # (first) sentence.
                a_end = 1
                if len(current_chunk) >= 2:
                    a_end = rng.randint(1, len(current_chunk) - 1)

                tokens_a = []
                for j in range(a_end):
                    tokens_a.extend(current_chunk[j])

                tokens_b = []
                # Random next
                is_random_next = False
                if len(current_chunk) == 1 or rng.random() < 0.5:
                    is_random_next = True
                    target_b_length = target_seq_length - len(tokens_a)

                    # This should rarely go for more than one iteration for large
                    # corpora. However, just to be careful, we try to make sure that
                    # the random document is not the same as the document
                    # we're processing.
                    for _ in range(10):
                        random_document_index = rng.randint(
                            0,
                            len(all_documents) - 1)
                        if random_document_index != document_index:
                            break

                    #If picked random document is the same as the current document
                    if random_document_index == document_index:
                        is_random_next = False

                    random_document = all_documents[random_document_index]
                    random_start = rng.randint(0, len(random_document) - 1)
                    for j in range(random_start, len(random_document)):
                        tokens_b.extend(random_document[j])
                        if len(tokens_b) >= target_b_length:
                            break
                    # We didn't actually use these segments so we "put them back" so
                    # they don't go to waste.
                    num_unused_segments = len(current_chunk) - a_end
                    i -= num_unused_segments
                # Actual next
                else:
                    is_random_next = False
                    for j in range(a_end, len(current_chunk)):
                        tokens_b.extend(current_chunk[j])
                truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng)

                assert len(tokens_a) >= 1
                assert len(tokens_b) >= 1

                tokens = []
                segment_ids = []
                tokens.append("[CLS]")
                segment_ids.append(0)
                for token in tokens_a:
                    tokens.append(token)
                    segment_ids.append(0)

                tokens.append("[SEP]")
                segment_ids.append(0)

                for token in tokens_b:
                    tokens.append(token)
                    segment_ids.append(1)
                tokens.append("[SEP]")
                segment_ids.append(1)

                (tokens, masked_lm_positions,
                 masked_lm_labels) = create_masked_lm_predictions(
                     tokens, masked_lm_prob, max_predictions_per_seq,
                     vocab_words, rng)
                instance = TrainingInstance(
                    tokens=tokens,
                    segment_ids=segment_ids,
                    is_random_next=is_random_next,
                    masked_lm_positions=masked_lm_positions,
                    masked_lm_labels=masked_lm_labels)
                instances.append(instance)
            current_chunk = []
            current_length = 0
        i += 1

    return instances


MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
                                          ["index", "label"])


def create_masked_lm_predictions(tokens, masked_lm_prob,
                                 max_predictions_per_seq, vocab_words, rng):
    """Creates the predictions for the masked LM objective."""

    cand_indexes = []
    for (i, token) in enumerate(tokens):
        if token == "[CLS]" or token == "[SEP]":
            continue
        cand_indexes.append(i)

    rng.shuffle(cand_indexes)

    output_tokens = list(tokens)

    num_to_predict = min(max_predictions_per_seq,
                         max(1, int(round(len(tokens) * masked_lm_prob))))

    masked_lms = []
    covered_indexes = set()
    for index in cand_indexes:
        if len(masked_lms) >= num_to_predict:
            break
        if index in covered_indexes:
            continue
        covered_indexes.add(index)

        masked_token = None
        # 80% of the time, replace with [MASK]
        if rng.random() < 0.8:
            masked_token = "[MASK]"
        else:
            # 10% of the time, keep original
            if rng.random() < 0.5:
                masked_token = tokens[index]
            # 10% of the time, replace with random word
            else:
                masked_token = vocab_words[rng.randint(0, len(vocab_words) - 1)]

        output_tokens[index] = masked_token

        masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))

    masked_lms = sorted(masked_lms, key=lambda x: x.index)

    masked_lm_positions = []
    masked_lm_labels = []
    for p in masked_lms:
        masked_lm_positions.append(p.index)
        masked_lm_labels.append(p.label)

    return (output_tokens, masked_lm_positions, masked_lm_labels)


def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens, rng):
    """Truncates a pair of sequences to a maximum sequence length."""
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_num_tokens:
            break

        trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
        assert len(trunc_tokens) >= 1

        # We want to sometimes truncate from the front and sometimes from the
        # back to add more randomness and avoid biases.
        if rng.random() < 0.5:
            del trunc_tokens[0]
        else:
            trunc_tokens.pop()


def main():

    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--input_file",
        default=None,
        type=str,
        required=True,
        help=
        "The input train corpus. can be directory with .txt files or a path to a single file"
    )
    parser.add_argument(
        "--output_file",
        default=None,
        type=str,
        required=True,
        help="The output file where created hdf5 formatted data will be written.")
    parser.add_argument("--vocab_file",
                        default=None,
                        type=str,
                        required=False,
                        help="The vocabulary the BERT model will train on. "
                        "Use bert_model argument would ignore this. "
                        "The bert_model argument is recommended.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        default=True,
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models. "
        "Use bert_model argument would ignore this. The bert_model argument is recommended."
    )
    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        required=False,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese."
        "If provided, use the pre-trained model used tokenizer to create data "
        "and ignore vocab_file and do_lower_case.")

    ## Other parameters
    #int
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. \n"
        "Sequences longer than this will be truncated, and sequences shorter \n"
        "than this will be padded.")
    parser.add_argument(
        "--dupe_factor",
        default=10,
        type=int,
        help=
        "Number of times to duplicate the input data (with different masks).")
    parser.add_argument(
        "--max_predictions_per_seq",
        default=20,
        type=int,
        help="Maximum number of masked LM predictions per sequence.")

    # floats
    parser.add_argument("--masked_lm_prob",
                        default=0.15,
                        type=float,
                        help="Masked LM probability.")
    parser.add_argument(
        "--short_seq_prob",
        default=0.1,
        type=float,
        help=
        "Probability to create a sequence shorter than maximum sequence length")

    parser.add_argument('--random_seed',
                        type=int,
                        default=12345,
                        help="random seed for initialization")

    args = parser.parse_args()
    print(args)

    if args.bert_model:
        tokenizer = BertTokenizer.from_pretrained(args.bert_model)
    else:
        assert args.vocab_file, (
            "vocab_file must be set If bert_model is not provided.")
        tokenizer = BertTokenizer(args.vocab_file,
                                  do_lower_case=args.do_lower_case)

    input_files = []
    if os.path.isfile(args.input_file):
        input_files.append(args.input_file)
    elif os.path.isdir(args.input_file):
        input_files = [
            os.path.join(args.input_file, f)
            for f in os.listdir(args.input_file)
            if (os.path.isfile(os.path.join(args.input_file, f))
                and f.endswith('.txt'))
        ]
    else:
        raise ValueError("{} is not a valid path".format(args.input_file))

    rng = random.Random(args.random_seed)
    instances = create_training_instances(input_files, tokenizer,
                                          args.max_seq_length, args.dupe_factor,
                                          args.short_seq_prob,
                                          args.masked_lm_prob,
                                          args.max_predictions_per_seq, rng)

    output_file = args.output_file

    write_instance_to_example_file(instances, tokenizer, args.max_seq_length,
                                   args.max_predictions_per_seq, output_file)


if __name__ == "__main__":
    main()