run_pretrain.py 12.8 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
16 17
import collections
import itertools
Z
Zeyu Chen 已提交
18 19 20 21 22 23 24 25
import os
import random
import time
import h5py
from functools import partial
from concurrent.futures import ThreadPoolExecutor

import numpy as np
26
import distutils.util
Z
Zeyu Chen 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40

import paddle
import paddle.distributed.fleet as fleet
from paddle.io import DataLoader, Dataset

from paddlenlp.transformers import BertForPretraining, BertModel, BertPretrainingCriterion
from paddlenlp.transformers import BertTokenizer
from data import create_data_holder, create_pretraining_dataset

MODEL_CLASSES = {"bert": (BertForPretraining, BertTokenizer)}


def parse_args():
    parser = argparse.ArgumentParser()
41 42 43 44 45
    parser.add_argument(
        "--select_device",
        default="gpu",
        type=str,
        help="The device that selecting for the training, must be gpu/xpu.")
Z
Zeyu Chen 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()), )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(
            sum([
                list(classes[-1].pretrained_init_configuration.keys())
                for classes in MODEL_CLASSES.values()
            ], [])), )
    parser.add_argument(
        "--input_dir",
        default=None,
        type=str,
        required=True,
        help="The input directory where the data will be read from.", )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--max_predictions_per_seq",
        default=80,
        type=int,
        help="The maximum total of masked tokens in input sequence")

    parser.add_argument(
        "--batch_size",
        default=8,
        type=int,
        help="Batch size per GPU/CPU for training.", )
    parser.add_argument(
        "--learning_rate",
        default=5e-5,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--weight_decay",
        default=0.0,
        type=float,
        help="Weight decay if we apply some.")
    parser.add_argument(
        "--adam_epsilon",
        default=1e-8,
        type=float,
        help="Epsilon for Adam optimizer.")
    parser.add_argument(
        "--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument(
        "--warmup_steps",
        default=0,
        type=int,
        help="Linear warmup over warmup_steps.")
    parser.add_argument(
        "--logging_steps",
        type=int,
        default=500,
        help="Log every X updates steps.")
    parser.add_argument(
        "--save_steps",
        type=int,
        default=500,
        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--seed", type=int, default=42, help="Random seed for initialization")
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    parser.add_argument(
        "--use_amp",
        type=distutils.util.strtobool,
        default=False,
        help="Enable mixed precision training.")
    parser.add_argument(
        "--enable_addto",
        type=distutils.util.strtobool,
        default=False,
        help="Whether to enable the addto strategy for gradient accumulation or not. This is only used for AMP training."
    )
    parser.add_argument(
        "--scale_loss",
        type=float,
        default=1.0,
        help="The value of scale_loss for fp16.")
Z
Zeyu Chen 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    args = parser.parse_args()
    return args


def select_dataset_file_for_each_worker(files, f_start_id, worker_num,
                                        worker_index):
    num_files = len(files)
    if worker_num > num_files:
        remainder = worker_num % num_files
        data_file = files[(
            f_start_id * worker_num + worker_index + remainder * f_start_id) %
                          num_files]
    else:
        data_file = files[(f_start_id * worker_num + worker_index) % num_files]
    return data_file


def reset_program_state_dict(model, state_dict):
    scale = model.initializer_range if hasattr(model, "initializer_range")\
        else model.bert.config["initializer_range"]

    new_state_dict = dict()
    for n, p in state_dict.items():
        if "layer_norm" not in p.name:
            dtype_str = "float32"
            if str(p.dtype) == "VarType.FP64":
                dtype_str = "float64"
            new_state_dict[p.name] = np.random.normal(
                loc=0.0, scale=scale, size=p.shape).astype(dtype_str)
    return new_state_dict


176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
def build_compiled_program(main_program, loss):
    exec_strategy = paddle.static.ExecutionStrategy()
    exec_strategy.num_threads = 1
    exec_strategy.num_iteration_per_drop_scope = 10000
    build_strategy = paddle.static.BuildStrategy()
    build_strategy.enable_addto = args.enable_addto
    main_program = paddle.static.CompiledProgram(
        main_program).with_data_parallel(
            loss_name=loss.name,
            exec_strategy=exec_strategy,
            build_strategy=build_strategy)
    return main_program


def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    paddle.seed(seed)


Z
Zeyu Chen 已提交
196 197 198 199 200 201 202 203 204 205 206 207
class WorkerInitObj(object):
    def __init__(self, seed):
        self.seed = seed

    def __call__(self, id):
        np.random.seed(seed=self.seed + id)
        random.seed(self.seed + id)


def do_train(args):
    # Initialize the paddle and paddle fleet execute enviroment
    paddle.enable_static()
208
    place = paddle.set_device(args.select_device)
Z
Zeyu Chen 已提交
209 210 211 212 213 214 215
    fleet.init(is_collective=True)

    # Create the random seed for the worker
    set_seed(args.seed)
    worker_init = WorkerInitObj(args.seed + fleet.worker_index())

    # Define the input data in the static mode
216 217
    main_program = paddle.static.default_main_program()
    startup_program = paddle.static.default_startup_program()
Z
Zeyu Chen 已提交
218 219 220 221 222 223 224 225 226 227 228
    data_holders = create_data_holder(args)

    [
        input_ids, segment_ids, input_mask, masked_lm_positions,
        masked_lm_labels, next_sentence_labels, masked_lm_scale
    ] = data_holders

    # Define the model structure in static mode
    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
229 230 231 232
    config = model_class.pretrained_init_configuration[args.model_name_or_path]
    if config["vocab_size"] % 8 != 0:
        config["vocab_size"] += 8 - (config["vocab_size"] % 8)
    model = BertForPretraining(BertModel(**config))
Z
Zeyu Chen 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    criterion = BertPretrainingCriterion(model.bert.config["vocab_size"])
    prediction_scores, seq_relationship_score = model(
        input_ids=input_ids,
        token_type_ids=segment_ids,
        attention_mask=input_mask,
        masked_positions=masked_lm_positions)
    loss = criterion(prediction_scores, seq_relationship_score,
                     masked_lm_labels, next_sentence_labels, masked_lm_scale)

    # Define the dynamic learing_reate scheduler and optimizer
    lr_scheduler = paddle.optimizer.lr.LambdaDecay(
        args.learning_rate,
        lambda current_step, num_warmup_steps=args.warmup_steps,
        num_training_steps=args.max_steps if args.max_steps > 0 else
        (len(train_data_loader) * args.num_train_epochs): float(
            current_step) / float(max(1, num_warmup_steps))
        if current_step < num_warmup_steps else max(
            0.0,
            float(num_training_steps - current_step) / float(
                max(1, num_training_steps - num_warmup_steps))))

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        epsilon=args.adam_epsilon,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])
263 264
    if args.use_amp:
        amp_list = paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists(
265
            custom_white_list=['softmax', 'layer_norm', 'gelu'])
266 267 268 269 270
        optimizer = paddle.fluid.contrib.mixed_precision.decorate(
            optimizer,
            amp_list,
            init_loss_scaling=args.scale_loss,
            use_dynamic_loss_scaling=True)
Z
Zeyu Chen 已提交
271 272 273 274 275 276 277
    # Use the fleet api to compile the distributed optimizer
    strategy = fleet.DistributedStrategy()
    optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
    optimizer.minimize(loss)

    # Define the Executor for running the static model
    exe = paddle.static.Executor(place)
278
    exe.run(startup_program)
Z
Zeyu Chen 已提交
279 280 281 282
    state_dict = model.state_dict()

    # Use the state dict to update the parameter
    reset_state_dict = reset_program_state_dict(model, state_dict)
283 284 285
    paddle.static.set_program_state(main_program, reset_state_dict)
    # Construct the compiled program
    main_program = build_compiled_program(main_program, loss)
Z
Zeyu Chen 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

    pool = ThreadPoolExecutor(1)
    global_step = 0
    tic_train = time.time()
    worker_num = fleet.worker_num()
    worker_index = fleet.worker_index()
    epoch = 0
    while True:
        files = [
            os.path.join(args.input_dir, f) for f in os.listdir(args.input_dir)
            if os.path.isfile(os.path.join(args.input_dir, f)) and "training" in
            f
        ]
        files.sort()
        num_files = len(files)
        random.Random(args.seed + epoch).shuffle(files)
        f_start_id = 0

        # Select one file for each worker and create the DataLoader for the file
        data_file = select_dataset_file_for_each_worker(
            files, f_start_id, worker_num, worker_index)
        train_data_loader, _ = create_pretraining_dataset(
            data_file, args.max_predictions_per_seq, args, data_holders,
            worker_init, paddle.static.cuda_places())

        for f_id in range(f_start_id + 1, len(files)):
            data_file = select_dataset_file_for_each_worker(
                files, f_id, worker_num, worker_index)
            dataset_future = pool.submit(create_pretraining_dataset, data_file,
                                         args.max_predictions_per_seq, args,
                                         data_holders, worker_init,
                                         paddle.static.cuda_places())

            for step, batch in enumerate(train_data_loader):
                global_step += 1
321 322 323
                loss_return = exe.run(main_program,
                                      feed=batch,
                                      fetch_list=[loss])
Z
Zeyu Chen 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
                # In the new 2.0 api, must call this function to change the learning_rate
                lr_scheduler.step()
                if global_step % args.logging_steps == 0:
                    time_cost = time.time() - tic_train
                    print(
                        "global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s, ips :%.2f sequences/s"
                        % (global_step, epoch, step, loss_return[0],
                           args.logging_steps / time_cost,
                           args.logging_steps * args.batch_size / time_cost))
                    tic_train = time.time()
                if global_step % args.save_steps == 0:
                    if worker_index == 0:
                        output_dir = os.path.join(args.output_dir,
                                                  "model_%d" % global_step)
                        if not os.path.exists(output_dir):
                            os.makedirs(output_dir)
                        # TODO(fangzeyang): Udpate the save_params to paddle.static
                        paddle.fluid.io.save_params(exe, output_dir)
                        tokenizer.save_pretrained(output_dir)
                if global_step >= args.max_steps:
                    del train_data_loader
                    return
            del train_data_loader
            train_data_loader, data_file = dataset_future.result(timeout=None)
        epoch += 1


if __name__ == "__main__":
    args = parse_args()
    do_train(args)