reader.py 3.8 KB
Newer Older
xujinanne's avatar
ELMO  
xujinanne 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import os
import sys
import numpy as np

Py3 = sys.version_info[0] == 3


def listDir(rootDir):
    res = []
    for filename in os.listdir(rootDir):
        pathname = os.path.join(rootDir, filename)
        if (os.path.isfile(pathname)):
            res.append(pathname)
    return res


_unk = -1
_bos = -1
_eos = -1


def _read_words(filename):
    data = []
    with open(filename, "r") as f:
        return f.read().decode("utf-8").replace("\n", "<eos>").split()


def _build_vocab(filename):
    data = _read_words(filename)

    counter = collections.Counter(data)
    count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))

    words, _ = list(zip(*count_pairs))

    print("vocab word num", len(words))
    word_to_id = dict(zip(words, range(len(words))))

    return word_to_id


def _load_vocab(filename):
    with open(filename, "r") as f:
        words = f.read().decode("utf-8").replace("\n", " ").split()
        word_to_id = dict(zip(words, range(len(words))))
        _unk = word_to_id['<S>']
        _eos = word_to_id['</S>']
        _unk = word_to_id['<UNK>']
        return word_to_id


def _file_to_word_ids(filenames, word_to_id):
    for filename in filenames:
        data = _read_words(filename)
        for id in [word_to_id[word] for word in data if word in word_to_id]:
            yield id


def ptb_raw_data(data_path=None, vocab_path=None, args=None):
    """Load PTB raw data from data directory "data_path".

  Reads PTB text files, converts strings to integer ids,
  and performs mini-batching of the inputs.

  The PTB dataset comes from Tomas Mikolov's webpage:

  http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz

  Args:
    data_path: string path to the directory where simple-examples.tgz has
      been extracted.

  Returns:
    tuple (train_data, valid_data, test_data, vocabulary)
    where each of the data objects can be passed to PTBIterator.
  """
    if vocab_path:
        word_to_id = _load_vocab(vocab_path)

    if not args.train_path:
        train_path = os.path.join(data_path, "train")
        train_data = _file_to_word_ids(listDir(train_path), word_to_id)
    else:
        train_path = args.train_path
        train_data = _file_to_word_ids([train_path], word_to_id)
    valid_path = os.path.join(data_path, "dev")
    test_path = os.path.join(data_path, "dev")
    valid_data = _file_to_word_ids(listDir(valid_path), word_to_id)
    test_data = _file_to_word_ids(listDir(test_path), word_to_id)
    vocabulary = len(word_to_id)
    return train_data, valid_data, test_data, vocabulary


def get_data_iter(raw_data, batch_size, num_steps):
    def __impl__():
        buf = []
        while True:
            if len(buf) >= num_steps * batch_size + 1:
                x = np.asarray(
                    buf[:-1], dtype='int64').reshape((batch_size, num_steps))
                y = np.asarray(
                    buf[1:], dtype='int64').reshape((batch_size, num_steps))
                yield (x, y)
                buf = [buf[-1]]
            try:
                buf.append(raw_data.next())
            except StopIteration:
                break

    return __impl__