data.py 16.9 KB
Newer Older
xujinanne's avatar
ELMO  
xujinanne 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import random

import numpy as np
import io
import six

class Vocabulary(object):
    '''
    A token vocabulary.  Holds a map from token to ids and provides
    a method for encoding text to a sequence of ids.
    '''

    def __init__(self, filename, validate_file=False):
        '''
        filename = the vocabulary file.  It is a flat text file with one
            (normalized) token per line.  In addition, the file should also
            contain the special tokens <S>, </S>, <UNK> (case sensitive).
        '''
        self._id_to_word = []
        self._word_to_id = {}
        self._unk = -1
        self._bos = -1
        self._eos = -1

        with io.open(filename, 'r', encoding='utf-8') as f:
            idx = 0
            for line in f:
                word_name = line.strip()
                if word_name == '<S>':
                    self._bos = idx
                elif word_name == '</S>':
                    self._eos = idx
                elif word_name == '<UNK>':
                    self._unk = idx
                if word_name == '!!!MAXTERMID':
                    continue

                self._id_to_word.append(word_name)
                self._word_to_id[word_name] = idx
                idx += 1

        # check to ensure file has special tokens
        if validate_file:
            if self._bos == -1 or self._eos == -1 or self._unk == -1:
                raise ValueError("Ensure the vocabulary file has "
                                 "<S>, </S>, <UNK> tokens")

    @property
    def bos(self):
        return self._bos

    @property
    def eos(self):
        return self._eos

    @property
    def unk(self):
        return self._unk

    @property
    def size(self):
        return len(self._id_to_word)

    def word_to_id(self, word):
        if word in self._word_to_id:
            return self._word_to_id[word]
        return self.unk

    def id_to_word(self, cur_id):
        return self._id_to_word[cur_id]

    def decode(self, cur_ids):
        """Convert a list of ids to a sentence, with space inserted."""
        return ' '.join([self.id_to_word(cur_id) for cur_id in cur_ids])

    def encode(self, sentence, reverse=False, split=True):
        """Convert a sentence to a list of ids, with special tokens added.
        Sentence is a single string with tokens separated by whitespace.

        If reverse, then the sentence is assumed to be reversed, and
            this method will swap the BOS/EOS tokens appropriately."""

        if split:
            word_ids = [
                self.word_to_id(cur_word) for cur_word in sentence.split()
            ]
        else:
            word_ids = [self.word_to_id(cur_word) for cur_word in sentence]

        if reverse:
            return np.array([self.eos] + word_ids + [self.bos], dtype=np.int32)
        else:
            return np.array([self.bos] + word_ids + [self.eos], dtype=np.int32)


class UnicodeCharsVocabulary(Vocabulary):
    """Vocabulary containing character-level and word level information.

    Has a word vocabulary that is used to lookup word ids and
    a character id that is used to map words to arrays of character ids.

    The character ids are defined by ord(c) for c in word.encode('utf-8')
    This limits the total number of possible char ids to 256.
    To this we add 5 additional special ids: begin sentence, end sentence,
        begin word, end word and padding.

    WARNING: for prediction, we add +1 to the output ids from this
    class to create a special padding id (=0).  As a result, we suggest
    you use the `Batcher`, `TokenBatcher`, and `LMDataset` classes instead
    of this lower level class.  If you are using this lower level class,
    then be sure to add the +1 appropriately, otherwise embeddings computed
    from the pre-trained model will be useless.
    """

    def __init__(self, filename, max_word_length, **kwargs):
        super(UnicodeCharsVocabulary, self).__init__(filename, **kwargs)
        self._max_word_length = max_word_length

        # char ids 0-255 come from utf-8 encoding bytes
        # assign 256-300 to special chars
        self.bos_char = 256  # <begin sentence>
        self.eos_char = 257  # <end sentence>
        self.bow_char = 258  # <begin word>
        self.eow_char = 259  # <end word>
        self.pad_char = 260  # <padding>

        num_words = len(self._id_to_word)

        self._word_char_ids = np.zeros(
            [num_words, max_word_length], dtype=np.int32)

        # the charcter representation of the begin/end of sentence characters
        def _make_bos_eos(c):
            r = np.zeros([self.max_word_length], dtype=np.int32)
            r[:] = self.pad_char
            r[0] = self.bow_char
            r[1] = c
            r[2] = self.eow_char
            return r

        self.bos_chars = _make_bos_eos(self.bos_char)
        self.eos_chars = _make_bos_eos(self.eos_char)

        for i, word in enumerate(self._id_to_word):
            self._word_char_ids[i] = self._convert_word_to_char_ids(word)

        self._word_char_ids[self.bos] = self.bos_chars
        self._word_char_ids[self.eos] = self.eos_chars

    @property
    def word_char_ids(self):
        return self._word_char_ids

    @property
    def max_word_length(self):
        return self._max_word_length

    def _convert_word_to_char_ids(self, word):
        code = np.zeros([self.max_word_length], dtype=np.int32)
        code[:] = self.pad_char

        word_encoded = word.encode('utf-8',
                                   'ignore')[:(self.max_word_length - 2)]
        code[0] = self.bow_char
        for k, chr_id in enumerate(word_encoded, start=1):
            code[k] = ord(chr_id)
        code[k + 1] = self.eow_char

        return code

    def word_to_char_ids(self, word):
        if word in self._word_to_id:
            return self._word_char_ids[self._word_to_id[word]]
        else:
            return self._convert_word_to_char_ids(word)

    def encode_chars(self, sentence, reverse=False, split=True):
        '''
        Encode the sentence as a white space delimited string of tokens.
        '''
        if split:
            chars_ids = [
                self.word_to_char_ids(cur_word)
                for cur_word in sentence.split()
            ]
        else:
            chars_ids = [
                self.word_to_char_ids(cur_word) for cur_word in sentence
            ]
        if reverse:
            return np.vstack([self.eos_chars] + chars_ids + [self.bos_chars])
        else:
            return np.vstack([self.bos_chars] + chars_ids + [self.eos_chars])


class Batcher(object):
    ''' 
    Batch sentences of tokenized text into character id matrices.
    '''

    # def __init__(self, lm_vocab_file: str, max_token_length: int):
    def __init__(self, lm_vocab_file, max_token_length):
        '''
        lm_vocab_file = the language model vocabulary file (one line per
            token)
        max_token_length = the maximum number of characters in each token
        '''
        max_token_length = int(max_token_length)
        self._lm_vocab = UnicodeCharsVocabulary(lm_vocab_file,
                                                max_token_length)
        self._max_token_length = max_token_length

    # def batch_sentences(self, sentences: List[List[str]]):
    def batch_sentences(self, sentences):
        '''
        Batch the sentences as character ids
        Each sentence is a list of tokens without <s> or </s>, e.g.
        [['The', 'first', 'sentence', '.'], ['Second', '.']]
        '''
        n_sentences = len(sentences)
        max_length = max(len(sentence) for sentence in sentences) + 2

        X_char_ids = np.zeros(
            (n_sentences, max_length, self._max_token_length), dtype=np.int64)

        for k, sent in enumerate(sentences):
            length = len(sent) + 2
            char_ids_without_mask = self._lm_vocab.encode_chars(
                sent, split=False)
            # add one so that 0 is the mask value
            X_char_ids[k, :length, :] = char_ids_without_mask + 1

        return X_char_ids


class TokenBatcher(object):
    ''' 
    Batch sentences of tokenized text into token id matrices.
    '''

    def __init__(self, lm_vocab_file):
        # def __init__(self, lm_vocab_file: str):
        '''
        lm_vocab_file = the language model vocabulary file (one line per
            token)
        '''
        self._lm_vocab = Vocabulary(lm_vocab_file)

    # def batch_sentences(self, sentences: List[List[str]]):
    def batch_sentences(self, sentences):
        '''
        Batch the sentences as character ids
        Each sentence is a list of tokens without <s> or </s>, e.g.
        [['The', 'first', 'sentence', '.'], ['Second', '.']]
        '''
        n_sentences = len(sentences)
        max_length = max(len(sentence) for sentence in sentences) + 2

        X_ids = np.zeros((n_sentences, max_length), dtype=np.int64)

        for k, sent in enumerate(sentences):
            length = len(sent) + 2
            ids_without_mask = self._lm_vocab.encode(sent, split=False)
            # add one so that 0 is the mask value
            X_ids[k, :length] = ids_without_mask + 1

        return X_ids


##### for training
def _get_batch(generator, batch_size, num_steps, max_word_length):
    """Read batches of input."""
    cur_stream = [None] * batch_size

    no_more_data = False
    while True:
        inputs = np.zeros([batch_size, num_steps], np.int32)
        if max_word_length is not None:
            char_inputs = np.zeros([batch_size, num_steps, max_word_length],
                                   np.int32)
        else:
            char_inputs = None
        targets = np.zeros([batch_size, num_steps], np.int32)

        for i in range(batch_size):
            cur_pos = 0

            while cur_pos < num_steps:
                if cur_stream[i] is None or len(cur_stream[i][0]) <= 1:
                    try:
                        cur_stream[i] = list(next(generator))
                    except StopIteration:
                        # No more data, exhaust current streams and quit
                        no_more_data = True
                        break

                how_many = min(len(cur_stream[i][0]) - 1, num_steps - cur_pos)
                next_pos = cur_pos + how_many

                inputs[i, cur_pos:next_pos] = cur_stream[i][0][:how_many]
                if max_word_length is not None:
                    char_inputs[i, cur_pos:next_pos] = cur_stream[i][
                        1][:how_many]
                targets[i, cur_pos:next_pos] = cur_stream[i][0][1:how_many + 1]

                cur_pos = next_pos

                cur_stream[i][0] = cur_stream[i][0][how_many:]
                if max_word_length is not None:
                    cur_stream[i][1] = cur_stream[i][1][how_many:]

        if no_more_data:
            # There is no more data.  Note: this will not return data
            # for the incomplete batch
            break

        X = {
            'token_ids': inputs,
            'tokens_characters': char_inputs,
            'next_token_id': targets
        }

        yield X


class LMDataset(object):
    """
    Hold a language model dataset.

    A dataset is a list of tokenized files.  Each file contains one sentence
        per line.  Each sentence is pre-tokenized and white space joined.
    """

    def __init__(self,
                 filepattern,
                 vocab,
                 reverse=False,
                 test=False,
                 shuffle_on_load=False):
        '''
        filepattern = a glob string that specifies the list of files.
        vocab = an instance of Vocabulary or UnicodeCharsVocabulary
        reverse = if True, then iterate over tokens in each sentence in reverse
        test = if True, then iterate through all data once then stop.
            Otherwise, iterate forever.
        shuffle_on_load = if True, then shuffle the sentences after loading.
        '''
        self._vocab = vocab
        self._all_shards = glob.glob(filepattern)
        print('Found %d shards at %s' % (len(self._all_shards), filepattern))
        if test:
            self._all_shards = list(np.random.choice(self._all_shards, size=4))
            print('sampled %d shards at %s' % (len(self._all_shards), filepattern))
        self._shards_to_choose = []

        self._reverse = reverse
        self._test = test
        self._shuffle_on_load = shuffle_on_load
        self._use_char_inputs = hasattr(vocab, 'encode_chars')

        self._ids = self._load_random_shard()

    def _choose_random_shard(self):
        if len(self._shards_to_choose) == 0:
            self._shards_to_choose = list(self._all_shards)
            random.shuffle(self._shards_to_choose)
        shard_name = self._shards_to_choose.pop()
        return shard_name

    def _load_random_shard(self):
        """Randomly select a file and read it."""
        if self._test:
            if len(self._all_shards) == 0:
                # we've loaded all the data
                # this will propogate up to the generator in get_batch
                # and stop iterating
                raise StopIteration
            else:
                shard_name = self._all_shards.pop()
        else:
            # just pick a random shard
            shard_name = self._choose_random_shard()

        ids = self._load_shard(shard_name)
        self._i = 0
        self._nids = len(ids)
        return ids

    def _load_shard(self, shard_name):
        """Read one file and convert to ids.

        Args:
            shard_name: file path.

        Returns:
            list of (id, char_id) tuples.
        """
        print('Loading data from: %s' % shard_name)
        with io.open(shard_name, 'r', encoding='utf-8') as f:
            sentences_raw = f.readlines()

        if self._reverse:
            sentences = []
            for sentence in sentences_raw:
                splitted = sentence.split()
                splitted.reverse()
                sentences.append(' '.join(splitted))
        else:
            sentences = sentences_raw

        if self._shuffle_on_load:
            print('shuffle sentences')
            random.shuffle(sentences)

        ids = [
            self.vocab.encode(sentence, self._reverse)
            for sentence in sentences
        ]
        if self._use_char_inputs:
            chars_ids = [
                self.vocab.encode_chars(sentence, self._reverse)
                for sentence in sentences
            ]
        else:
            chars_ids = [None] * len(ids)

        print('Loaded %d sentences.' % len(ids))
        print('Finished loading')
        return list(zip(ids, chars_ids))

    def get_sentence(self):
        while True:
            if self._i == self._nids:
                self._ids = self._load_random_shard()
            ret = self._ids[self._i]
            self._i += 1
            yield ret

    @property
    def max_word_length(self):
        if self._use_char_inputs:
            return self._vocab.max_word_length
        else:
            return None

    def iter_batches(self, batch_size, num_steps):
        for X in _get_batch(self.get_sentence(), batch_size, num_steps,
                            self.max_word_length):

            # token_ids = (batch_size, num_steps)
            # char_inputs = (batch_size, num_steps, 50) of character ids
            # targets = word ID of next word (batch_size, num_steps)
            yield X

    @property
    def vocab(self):
        return self._vocab


class BidirectionalLMDataset(object):
    def __init__(self, filepattern, vocab, test=False, shuffle_on_load=False):
        '''
        bidirectional version of LMDataset
        '''
        self._data_forward = LMDataset(
            filepattern,
            vocab,
            reverse=False,
            test=test,
            shuffle_on_load=shuffle_on_load)
        self._data_reverse = LMDataset(
            filepattern,
            vocab,
            reverse=True,
            test=test,
            shuffle_on_load=shuffle_on_load)

    def iter_batches(self, batch_size, num_steps):
        max_word_length = self._data_forward.max_word_length

        for X, Xr in six.moves.zip(
                _get_batch(self._data_forward.get_sentence(), batch_size,
                           num_steps, max_word_length),
                _get_batch(self._data_reverse.get_sentence(), batch_size,
                           num_steps, max_word_length)):

            for k, v in Xr.items():
                X[k + '_reverse'] = v

            yield X


class InvalidNumberOfCharacters(Exception):
    pass