ctcn_reader.py 17.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
import random
import cv2
import sys
import numpy as np
import gc
import copy
import multiprocessing

import logging
logger = logging.getLogger(__name__)

try:
    import cPickle as pickle
    from cStringIO import StringIO
except ImportError:
    import pickle
    from io import BytesIO

from .reader_utils import DataReader
from models.ctcn.ctcn_utils import box_clamp1D, box_iou1D, BoxCoder

python_ver = sys.version_info

#random.seed(0)
#np.random.seed(0)


class CTCNReader(DataReader):
    """
    Data reader for C-TCN model, which was stored as features extracted by prior networks
    dataset cfg: img_size, the temporal dimension size of input data
                 root, the root dir of data
                 snippet_length, snippet length when sampling
                 filelist, the file list storing id and annotations of each data item
                 rgb, the dir of rgb data
                 flow, the dir of optical flow data
                 batch_size, batch size of input data
                 num_threads, number of threads of data processing

    """

    def __init__(self, name, mode, cfg):
        self.name = name
        self.mode = mode
        self.img_size = cfg.MODEL.img_size  # 512
        self.snippet_length = cfg.MODEL.snippet_length  # 1
        self.root = cfg.MODEL.root  # root dir of data
        self.filelist = cfg[mode.upper()]['filelist']
        self.rgb = cfg[mode.upper()]['rgb']
        self.flow = cfg[mode.upper()]['flow']
        self.batch_size = cfg[mode.upper()]['batch_size']
        self.num_threads = cfg[mode.upper()]['num_threads']
        if (mode == 'test') or (mode == 'infer'):
            self.num_threads = 1  # set num_threads as 1 for test and infer

    def random_move(self, img, o_boxes, labels):
        boxes = np.array(o_boxes)
        mask = np.zeros(img.shape[0])
        for i in boxes:
            for j in range(i[0].astype('int'),
                           min(i[1].astype('int'), img.shape[0])):
                mask[j] = 1
        mask = (mask == 0)
        bg = img[mask]
        bg_len = bg.shape[0]
        if bg_len < 5:
            return img, boxes, labels
        insert_place = random.sample(range(bg_len), len(boxes))
        index = np.argsort(insert_place)
        new_img = bg[0:insert_place[index[0]], :]
        new_boxes = []
        new_labels = []

        for i in range(boxes.shape[0]):
            new_boxes.append([
                new_img.shape[0],
                new_img.shape[0] + boxes[index[i]][1] - boxes[index[i]][0]
            ])
            new_labels.append(labels[index[i]])
            new_img = np.concatenate(
                (new_img,
                 img[int(boxes[index[i]][0]):int(boxes[index[i]][1]), :]))
            if i < boxes.shape[0] - 1:
                new_img = np.concatenate(
                    (new_img,
                     bg[insert_place[index[i]]:insert_place[index[i + 1]], :]))
        new_img = np.concatenate(
            (new_img, bg[insert_place[index[len(boxes) - 1]]:, :]))
        del img, boxes, mask, bg, labels
        gc.collect()
        return new_img, new_boxes, new_labels

    def random_crop(self, img, boxes, labels, min_scale=0.3):
        boxes = np.array(boxes)
        labels = np.array(labels)
        imh, imw = img.shape[:2]
        params = [(0, imh)]
        for min_iou in (0, 0.1, 0.3, 0.5, 0.7, 0.9):
            for _ in range(100):
                scale = random.uniform(0.3, 1)
                h = int(imh * scale)

                y = random.randrange(imh - h)
                roi = [[y, y + h]]
                ious = box_iou1D(boxes, roi)
                if ious.min() >= min_iou:
                    params.append((y, h))
                    break
        y, h = random.choice(params)
        img = img[y:y + h, :]
        center = (boxes[:, 0] + boxes[:, 1]) / 2
        mask = (center[:] >= y) & (center[:] <= y + h)
        if mask.any():
            boxes = boxes[np.squeeze(mask.nonzero())] - np.array([[y, y]])
            boxes = box_clamp1D(boxes, 0, h)
            labels = labels[mask]
        else:
            boxes = [[0, 0]]
            labels = [0]
        return img, boxes, labels

    def resize(self, img, boxes, size, random_interpolation=False):
        '''Resize the input PIL image to given size.

        If boxes is not None, resize boxes accordingly.

        Args:
          img: image to be resized.
          boxes: (tensor) object boxes, sized [#obj,2].
          size: (tuple or int)
            - if is tuple, resize image to the size.
            - if is int, resize the shorter side to the size while maintaining the aspect ratio.
          random_interpolation: (bool) randomly choose a resize interpolation method.

        Returns:
          img: (cv2's numpy.ndarray) resized image.
          boxes: (tensor) resized boxes.

        Example:
        >> img, boxes = resize(img, boxes, 600)  # resize shorter side to 600
        '''
        h, w = img.shape[:2]
        if h == size:
            return img, boxes
        if h == 0:
            img = np.zeros((512, 402), np.float32)
            return img, boxes

        ow = w
        oh = size
        sw = 1
        sh = float(oh) / h
        method = random.choice([
            cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA
        ]) if random_interpolation else cv2.INTER_NEAREST
        img = cv2.resize(img, (ow, oh), interpolation=method)
        if boxes is not None:
            boxes = boxes * np.array([sh, sh])
        return img, boxes

    def transform(self, feats, boxes, labels, mode):
        feats = np.array(feats)
        boxes = np.array(boxes)
        labels = np.array(labels)
        #print('name {}, labels {}'.format(fname, labels))

        if mode == 'train':
            feats, boxes, labels = self.random_move(feats, boxes, labels)
            feats, boxes, labels = self.random_crop(feats, boxes, labels)
            feats, boxes = self.resize(
                feats, boxes, size=self.img_size, random_interpolation=True)
            h, w = feats.shape[:2]
            img = feats.reshape(1, h, w)
            Coder = BoxCoder()
            boxes, labels = Coder.encode(boxes, labels)
        if mode == 'test' or mode == 'valid':
            feats, boxes = self.resize(feats, boxes, size=self.img_size)
            h, w = feats.shape[:2]
            img = feats.reshape(1, h, w)
            Coder = BoxCoder()
            boxes, labels = Coder.encode(boxes, labels)
        return img, boxes, labels

S
SunGaofeng 已提交
199 200 201
    def load_file(self, fname):
        if python_ver < (3, 0):
            rgb_pkl = pickle.load(
202
                open(os.path.join(self.root, self.rgb, fname + '.pkl'), 'rb'))
S
SunGaofeng 已提交
203
            flow_pkl = pickle.load(
204
                open(os.path.join(self.root, self.flow, fname + '.pkl'), 'rb'))
S
SunGaofeng 已提交
205 206
        else:
            rgb_pkl = pickle.load(
207
                open(os.path.join(self.root, self.rgb, fname + '.pkl'), 'rb'),
S
SunGaofeng 已提交
208 209
                encoding='bytes')
            flow_pkl = pickle.load(
210
                open(os.path.join(self.root, self.flow, fname + '.pkl'), 'rb'),
S
SunGaofeng 已提交
211
                encoding='bytes')
212 213
        data_flow = np.array(flow_pkl[b'scores'])
        data_rgb = np.array(rgb_pkl[b'scores'])
S
SunGaofeng 已提交
214 215 216 217 218 219 220 221 222 223 224 225
        if data_flow.shape[0] < data_rgb.shape[0]:
            data_rgb = data_rgb[0:data_flow.shape[0], :]
        elif data_flow.shape[0] > data_rgb.shape[0]:
            data_flow = data_flow[0:data_rgb.shape[0], :]

        feats = np.concatenate((data_rgb, data_flow), axis=1)
        if feats.shape[0] == 0 or feats.shape[1] == 0:
            feats = np.zeros((512, 1024), np.float32)
            logger.info('### file loading len = 0 {} ###'.format(fname))

        return feats

226 227
    def create_reader(self):
        """reader creator for ctcn model"""
S
SunGaofeng 已提交
228 229
        if self.mode == 'infer':
            return self.make_infer_reader()
230 231 232 233 234
        if self.num_threads == 1:
            return self.make_reader()
        else:
            return self.make_multiprocess_reader()

S
SunGaofeng 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    def make_infer_reader(self):
        """reader for inference"""

        def reader():
            with open(self.filelist) as f:
                reader_list = f.readlines()
            batch_out = []
            for line in reader_list:
                fname = line.strip().split()[0]
                rgb_exist = os.path.exists(
                    os.path.join(self.root, self.rgb, fname + '.pkl'))
                flow_exist = os.path.exists(
                    os.path.join(self.root, self.flow, fname + '.pkl'))
                if not (rgb_exist and flow_exist):
                    logger.info('file not exist', fname)
                    continue
                try:
                    feats = self.load_file(fname)
                    feats, boxes = self.resize(
                        feats, boxes=None, size=self.img_size)
                    h, w = feats.shape[:2]
                    feats = feats.reshape(1, h, w)
                except:
                    logger.info('Error when loading {}'.format(fname))
                    continue
                batch_out.append((feats, fname))
                if len(batch_out) == self.batch_size:
                    yield batch_out
                    batch_out = []

        return reader

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    def make_reader(self):
        """single process reader"""

        def reader():
            with open(self.filelist) as f:
                reader_list = f.readlines()
            if self.mode == 'train':
                random.shuffle(reader_list)
            fnames = []
            total_boxes = []
            total_labels = []
            total_label_ids = []
            for i in range(len(reader_list)):
                line = reader_list[i]
                splited = line.strip().split()
                rgb_exist = os.path.exists(
                    os.path.join(self.root, self.rgb, splited[0] + '.pkl'))
                flow_exist = os.path.exists(
                    os.path.join(self.root, self.flow, splited[0] + '.pkl'))
                if not (rgb_exist and flow_exist):
287
                    logger.info('file not exist {}'.format(splited[0]))
288 289 290 291 292 293
                    continue
                fnames.append(splited[0])
                frames_num = int(splited[1]) // self.snippet_length
                num_boxes = int(splited[2])
                box = []
                label = []
S
SunGaofeng 已提交
294 295 296 297
                for ii in range(num_boxes):
                    c = splited[3 + 3 * ii]
                    xmin = splited[4 + 3 * ii]
                    xmax = splited[5 + 3 * ii]
298 299 300 301 302 303 304 305 306 307 308 309 310
                    box.append([
                        float(xmin) / self.snippet_length,
                        float(xmax) / self.snippet_length
                    ])
                    label.append(int(c))
                total_label_ids.append(i)
                total_boxes.append(box)
                total_labels.append(label)
            num_videos = len(fnames)
            batch_out = []
            for idx in range(num_videos):
                fname = fnames[idx]
                try:
S
SunGaofeng 已提交
311
                    feats = self.load_file(fname)
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
                    boxes = copy.deepcopy(total_boxes[idx])
                    labels = copy.deepcopy(total_labels[idx])
                    feats, boxes, labels = self.transform(feats, boxes, labels,
                                                          self.mode)
                    labels = labels.astype('int64')
                    boxes = boxes.astype('float32')
                    num_pos = len(np.where(labels > 0)[0])
                except:
                    logger.info('Error when loading {}'.format(fname))
                    continue
                if (num_pos < 1) and (self.mode == 'train' or
                                      self.mode == 'valid'):
                    #logger.info('=== no pos for ==='.format(fname, num_pos))
                    continue
                if self.mode == 'train' or self.mode == 'valid':
                    batch_out.append((feats, boxes, labels))
                elif self.mode == 'test':
                    batch_out.append(
                        (feats, boxes, labels, total_label_ids[idx]))
                else:
                    raise NotImplementedError('mode {} not implemented'.format(
                        self.mode))
                if len(batch_out) == self.batch_size:
                    yield batch_out
                    batch_out = []

        return reader

    def make_multiprocess_reader(self):
        """multiprocess reader"""

        def read_into_queue(reader_list, queue):
            fnames = []
            total_boxes = []
            total_labels = []
            total_label_ids = []
            #for line in reader_list:
            for i in range(len(reader_list)):
                line = reader_list[i]
                splited = line.strip().split()
                rgb_exist = os.path.exists(
                    os.path.join(self.root, self.rgb, splited[0] + '.pkl'))
                flow_exist = os.path.exists(
                    os.path.join(self.root, self.flow, splited[0] + '.pkl'))
                if not (rgb_exist and flow_exist):
357
                    logger.info('file not exist {}'.format(splited[0]))
358 359 360 361 362 363
                    continue
                fnames.append(splited[0])
                frames_num = int(splited[1]) // self.snippet_length
                num_boxes = int(splited[2])
                box = []
                label = []
S
SunGaofeng 已提交
364 365 366 367
                for ii in range(num_boxes):
                    c = splited[3 + 3 * ii]
                    xmin = splited[4 + 3 * ii]
                    xmax = splited[5 + 3 * ii]
368 369 370 371 372 373 374 375 376 377 378 379 380
                    box.append([
                        float(xmin) / self.snippet_length,
                        float(xmax) / self.snippet_length
                    ])
                    label.append(int(c))
                total_label_ids.append(i)
                total_boxes.append(box)
                total_labels.append(label)
            num_videos = len(fnames)
            batch_out = []
            for idx in range(num_videos):
                fname = fnames[idx]
                try:
S
SunGaofeng 已提交
381
                    feats = self.load_file(fname)
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
                    boxes = copy.deepcopy(total_boxes[idx])
                    labels = copy.deepcopy(total_labels[idx])

                    feats, boxes, labels = self.transform(feats, boxes, labels,
                                                          self.mode)
                    labels = labels.astype('int64')
                    boxes = boxes.astype('float32')
                    num_pos = len(np.where(labels > 0)[0])
                except:
                    logger.info('Error when loading {}'.format(fname))
                    continue
                if (not (num_pos >= 1)) and (self.mode == 'train' or
                                             self.mode == 'valid'):
                    #logger.info('=== no pos for {}, num_pos = {} ==='.format(fname, num_pos))
                    continue

                if self.mode == 'train' or self.mode == 'valid':
                    batch_out.append((feats, boxes, labels))
                elif self.mode == 'test':
                    batch_out.append(
                        (feats, boxes, labels, total_label_ids[idx]))
                else:
                    raise NotImplementedError('mode {} not implemented'.format(
                        self.mode))

                if len(batch_out) == self.batch_size:
                    queue.put(batch_out)
                    batch_out = []
            queue.put(None)

        def queue_reader():
            with open(self.filelist) as f:
                fl = f.readlines()
            if self.mode == 'train':
                random.shuffle(fl)
            n = self.num_threads
            queue_size = 20
            reader_lists = [None] * n
            file_num = int(len(fl) // n)
            for i in range(n):
                if i < len(reader_lists) - 1:
                    tmp_list = fl[i * file_num:(i + 1) * file_num]
                else:
                    tmp_list = fl[i * file_num:]
                reader_lists[i] = tmp_list

            queue = multiprocessing.Queue(queue_size)
            p_list = [None] * len(reader_lists)
            # for reader_list in reader_lists:
            for i in range(len(reader_lists)):
                reader_list = reader_lists[i]
                p_list[i] = multiprocessing.Process(
                    target=read_into_queue, args=(reader_list, queue))
                p_list[i].start()
            reader_num = len(reader_lists)
            finish_num = 0
            while finish_num < reader_num:
                sample = queue.get()
                if sample is None:
                    finish_num += 1
                else:
                    yield sample
            for i in range(len(p_list)):
                if p_list[i].is_alive():
                    p_list[i].join()

        return queue_reader