reader.py 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# -*- coding: utf-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LiuChiaChi 已提交
15

16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

L
LiuChiaChi 已提交
20 21 22 23
import numpy as np
import paddle
from paddle.io import Dataset

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
import collections
import os
import io
import sys
import numpy as np

Py3 = sys.version_info[0] == 3

UNK_ID = 0


def _read_words(filename):
    data = []
    with io.open(filename, "r", encoding='utf-8') as f:
        if Py3:
            return f.read().replace("\n", "<eos>").split()
        else:
            return f.read().decode("utf-8").replace(u"\n", u"<eos>").split()


def read_all_line(filenam):
    data = []
    with io.open(filename, "r", encoding='utf-8') as f:
        for line in f.readlines():
            data.append(line.strip())


def _build_vocab(filename):

    vocab_dict = {}
    ids = 0
    with io.open(filename, "r", encoding='utf-8') as f:
        for line in f.readlines():
            vocab_dict[line.strip()] = ids
            ids += 1

    print("vocab word num", ids)

    return vocab_dict


def _para_file_to_ids(src_file, tar_file, src_vocab, tar_vocab):

    src_data = []
    with io.open(src_file, "r", encoding='utf-8') as f_src:
        for line in f_src.readlines():
            arra = line.strip().split()
            ids = [src_vocab[w] if w in src_vocab else UNK_ID for w in arra]
            ids = ids

            src_data.append(ids)

    tar_data = []
    with io.open(tar_file, "r", encoding='utf-8') as f_tar:
        for line in f_tar.readlines():
            arra = line.strip().split()
            ids = [tar_vocab[w] if w in tar_vocab else UNK_ID for w in arra]

            ids = [1] + ids + [2]

            tar_data.append(ids)

    return src_data, tar_data


def filter_len(src, tar, max_sequence_len=50):
    new_src = []
    new_tar = []

    for id1, id2 in zip(src, tar):
        if len(id1) > max_sequence_len:
            id1 = id1[:max_sequence_len]
        if len(id2) > max_sequence_len + 2:
            id2 = id2[:max_sequence_len + 2]

        new_src.append(id1)
        new_tar.append(id2)

    return new_src, new_tar


def raw_data(src_lang,
             tar_lang,
             vocab_prefix,
             train_prefix,
             eval_prefix,
             test_prefix,
             max_sequence_len=50):

    src_vocab_file = vocab_prefix + "." + src_lang
    tar_vocab_file = vocab_prefix + "." + tar_lang

    src_train_file = train_prefix + "." + src_lang
    tar_train_file = train_prefix + "." + tar_lang

    src_eval_file = eval_prefix + "." + src_lang
    tar_eval_file = eval_prefix + "." + tar_lang

    src_test_file = test_prefix + "." + src_lang
    tar_test_file = test_prefix + "." + tar_lang

    src_vocab = _build_vocab(src_vocab_file)
    tar_vocab = _build_vocab(tar_vocab_file)

    train_src, train_tar = _para_file_to_ids( src_train_file, tar_train_file, \
                                              src_vocab, tar_vocab )
    train_src, train_tar = filter_len(
        train_src, train_tar, max_sequence_len=max_sequence_len)
    eval_src, eval_tar = _para_file_to_ids( src_eval_file, tar_eval_file, \
                                              src_vocab, tar_vocab )

    test_src, test_tar = _para_file_to_ids( src_test_file, tar_test_file, \
                                              src_vocab, tar_vocab )

L
LiuChiaChi 已提交
138
    return (train_src, train_tar), (eval_src, eval_tar), (test_src, test_tar),\
139 140 141 142 143 144 145 146 147 148 149 150 151
            (src_vocab, tar_vocab)


def raw_mono_data(vocab_file, file_path):

    src_vocab = _build_vocab(vocab_file)

    test_src, test_tar = _para_file_to_ids( file_path, file_path, \
                                              src_vocab, src_vocab )

    return (test_src, test_tar)


L
LiuChiaChi 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
class IWSLTDataset(Dataset):
    def __init__(self, raw_data):
        super(IWSLTDataset, self).__init__()
        self.raw_data = raw_data
        self.src_data, self.tar_data = self.sort_data(raw_data)
        self.num_samples = len(self.src_data)

    def sort_data(self, raw_data):
        src_data, trg_data = raw_data
        data_pair = []
        for src, trg in zip(src_data, trg_data):
            data_pair.append([src, trg])
        sorted_data_pair = sorted(data_pair, key=lambda k: len(k[0]))

        src_data = [data_pair[0] for data_pair in sorted_data_pair]
        trg_data = [data_pair[1] for data_pair in sorted_data_pair]

        return src_data, trg_data

    def __getitem__(self, idx):
        src_ids, tar_ids = np.asarray(self.src_data[idx]), np.asarray(
            self.tar_data[idx])
        src_mask, tar_mask = len(src_ids), len(tar_ids)
        return src_ids, tar_ids, src_mask, tar_mask

    def __len__(self):
        return self.num_samples


class DataCollector():
    def __init__(self):
        super(DataCollector, self).__init__()

    def pad(self, data, max_len, source=False):
        bs = len(data)
        ids = np.ones((bs, max_len), dtype='int64') * 2

        for i, ele in enumerate(data):
            ids[i, :len(ele)] = ele

        return ids
193

L
LiuChiaChi 已提交
194 195
    def __call__(self, samples):
        batch_size = len(samples)
196

L
LiuChiaChi 已提交
197 198 199 200
        src_ids_np = np.asarray([sample[0] for sample in samples])
        tar_ids_np = np.asarray([sample[1] for sample in samples])
        src_len = np.asarray([sample[2] for sample in samples])
        trg_len = np.asarray([sample[3] for sample in samples])
201

L
LiuChiaChi 已提交
202 203
        max_source_len = max(max(src_len), 1)
        max_tar_len = max(max(trg_len), 1)
204

L
LiuChiaChi 已提交
205 206
        src_ids_pad_np = self.pad(src_ids_np, max_source_len, source=True)
        tar_ids_pad_np = self.pad(tar_ids_np, max_tar_len)
207

L
LiuChiaChi 已提交
208 209 210 211
        in_tar = tar_ids_pad_np[:, :-1]
        label_tar = tar_ids_pad_np[:, 1:]
        label_tar = label_tar.reshape(
            (label_tar.shape[0], label_tar.shape[1], 1))
212

L
LiuChiaChi 已提交
213 214
        input_data_feed = src_ids_pad_np, in_tar, label_tar, src_len, trg_len
        return input_data_feed