introduction_en.ipynb 36.5 KB
Notebook
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "6f0a162f",
   "metadata": {},
   "source": [
    "## 1. VSQL Introduction\n",
    "\n",
    "Variational Shadow Quantum Learning (VSQL) is a hybird quantum-classical framework for supervised quantum learning, which utilizes parameterized quantum circuits and classical shadows. Unlike commonly used variational quantum algorithms, the VSQL method extracts \"local\" features from the subspace instead of the whole Hilbert space."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "99c07da5",
   "metadata": {},
   "source": [
    "## 2. Introduction to the Model Principle\n",
    "\n",
    "The flow chart of VSQL is as follows.\n",
    "\n",
    "![pipeline](https://ai-studio-static-online.cdn.bcebos.com/2b806cc0405e425995df1786a5c5976196c5ca83697647d9ae70ac7cc0bf83c9 \"Flow chart of VSQL\")\n",
    "<div style=\"text-align:center\">Flow chart of VSQL</div>\n",
    "\n",
    "The training steps are as below.\n",
    "\n",
    "1. Encode a classical data point $\\mathbf{x}^i$ into a quantum state $\\left|\\mathbf{x}^i\\right>$.\n",
    "2. Prepare a parameterized local quantum circuit $U(\\mathbf{\\theta})$ and initialize its parameters $\\mathbf{\\theta}$.\n",
    "3. Apply $U(\\mathbf{\\theta})$ on the first few qubits. Then, obtain a shadow feature via measuring a local observable, for instance, $X\\otimes X\\cdots \\otimes X$, on these qubits.\n",
    "4. Sliding down $U(\\mathbf{\\theta})$ one qubit each time, repeat step 3 until the last qubit has been covered.\n",
    "5. Feed all shadow features obtained from steps 3-4 to an FCNN and get the predicted label $\\tilde{\\mathbf{y}}^i$ through an activation function. For multi-label classification problems, we use the softmax activation function.\n",
    "5. Repeat steps 3-5 until all data points in the data set have been processed. Then calculate the loss function $\\mathcal{L}(\\mathbf{\\theta}, \\mathbf{W}, \\mathbf{b})$.\n",
    "6. Adjust the parameters $\\mathbf{\\theta}$, $\\mathbf{W}$, and $\\mathbf{b}$ through optimization methods such as gradient descent to minimize the loss function. Then we get the optimized model $\\mathcal{F}$.\n",
    "\n",
    "Since VSQL only extracts local shadow features, it can be easily implemented on quantum devices with topological connectivity limits. Besides, since the $U(\\mathbf{\\theta})$ used in circuits are identical, the number of parameters involved is significantly smaller than other commonly used variational quantum classifiers.\n",
    "\n",
    "### 2.1 Introduction to local shadow circuits\n",
    "\n",
    "Now, we are ready for the next step. Before diving into details of the circuit, we need to clarify several parameters:\n",
    "- $n$: the number of qubits encoding each data point.\n",
    "- $n_{qsc}$: the width of the quantum shadow circuit . We only apply $U(\\mathbf{\\theta})$ on consecutive $n_{qsc}$ qubits each time.\n",
    "- $D$: the depth of the circuit, indicating the repeating times of a layer in $U(\\mathbf{\\theta})$.\n",
    "\n",
    "Here, we give an example where $n = 4$ and $n_{qsc} = 2$.\n",
    "\n",
    "We first apply $U(\\mathbf{\\theta})$ to the first two qubits and obtain the shadow feature $O_1$.\n",
    "\n",
    "![qubit0](https://ai-studio-static-online.cdn.bcebos.com/818b3c2bac5d4ef0b73e223c357b49d688649f036d7b4d798fb54838a555c6e6 \"The first circuit\")\n",
    "<div style=\"text-align:center\">The first circuit</div>\n",
    "\n",
    "Then, we prepare a copy of the same input state $\\left|\\mathbf{x}^i\\right>$, apply $U(\\mathbf{\\theta})$ to the two qubits in the middle, and obtain the shadow feature $O_2$.\n",
    "\n",
    "![qubit1](https://ai-studio-static-online.cdn.bcebos.com/b58591c4adfc4d18a657cf1b811f4fc0c6dced8fd6b54724a78fbe1c86bb32dc \"The second circuit\")\n",
    "<div style=\"text-align:center\">The second circuit</div>\n",
    "\n",
    "Finally, we prepare another copy of the same input state, apply $U(\\mathbf{\\theta})$ to the last two qubits, and obtain the shadow feature $O_3$. Now we are done with this data point!\n",
    "\n",
    "![qubit2](https://ai-studio-static-online.cdn.bcebos.com/57089cc1c0dd412ba984a0b12e20f5d88585aaa4d293455aa9f6bb7869d7f771 \"The last circuit\")\n",
    "<div style=\"text-align:center\">The last circuit</div>\n",
    "\n",
    "In general, we will need to repeat this process for $n - n_{qsc} + 1$ times for each data point. One thing to point out is that we only use one shadow circuit in the above example. When sliding the shadow circuit $U(\\mathbf{\\theta})$ through the $n$-qubit Hilbert space, the same parameters $\\mathbf{\\theta}$ are used. You can use more shadow circuits for complicated tasks, and different shadow circuits should have different parameters $\\mathbf{\\theta}$.\n",
    "\n",
    "Below, we will use a 2-local shadow circuit, i.e., $n_{qsc}=2$ for the MNIST classification task, and the circuit's structure is shown in the follow figure.\n",
    "\n",
    "![2-local](https://ai-studio-static-online.cdn.bcebos.com/0c1035262cb64f61bd3cc87dbf53253aa6a7ecc170634c4db8dd71d576a9409c \"The 2-local shadow circuit design\")\n",
    "<div style=\"text-align:center\">The 2-local shadow circuit design</div>\n",
    "\n",
    "The circuit layer in the dashed box is repeated for $D$ times to increase the expressive power of the quantum circuit. The structure of the circuit is not unique. You can try to design your own circuit."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bbec4432",
   "metadata": {},
   "source": [
    "## 3. Model Performance\n",
    "\n",
    "The binary classification effect of VSQL on MNIST dataset is as follows.\n",
    "\n",
    "![binary-classification](https://ai-studio-static-online.cdn.bcebos.com/03c38b174d0e47ae9dbeea6dfda1333d6d3aa74209594324b78c9159b72e7e8a \"Binary classification performance\")\n",
    "<div style=\"text-align:center\">Binary classification performance</div>\n",
    "\n",
    "The ten-class classification effect of VSQL on the MNIST dataset is as follows.\n",
    "\n",
    "![10-classification](https://ai-studio-static-online.cdn.bcebos.com/54a0273672ad4ec5ba6b7d73b3b225f8d97380c43ceb495a82d16a258117182b \"Ten-class classification performance\")\n",
    "<div style=\"text-align:center\">Ten-class classification performance</div>\n",
    "\n",
    "As shown in the tables, VSQL can achieve higher classification accuracy with fewer parameters than other quantum neural networks. Compared with classical neural networks, VSQL can also achieve similar results in ten-class classification tasks with fewer parameters. And when the amount of data is small, VSQL can achieve better results than classical neural networks."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0af2eccc",
   "metadata": {},
   "source": [
    "## 4. How to Use the Model\n",
    "\n",
    "Configure the environment according to the following code."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "77177110",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2022-11-24 13:45:54--  https://release-data.cdn.bcebos.com/PaddleQuantum/vsql.pdparams\n",
      "Resolving release-data.cdn.bcebos.com (release-data.cdn.bcebos.com)... 222.35.73.1\n",
      "Connecting to release-data.cdn.bcebos.com (release-data.cdn.bcebos.com)|222.35.73.1|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 857 [application/octet-stream]\n",
      "Saving to: ‘vsql.pdparams.2’\n",
      "\n",
      "vsql.pdparams.2     100%[===================>]     857  --.-KB/s    in 0s      \n",
      "\n",
      "2022-11-24 13:45:54 (817 MB/s) - ‘vsql.pdparams.2’ saved [857/857]\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# Install the paddle quantum\n",
    "%pip install paddle-quantum\n",
    "# Download the pretrained model\n",
    "!wget https://release-data.cdn.bcebos.com/PaddleQuantum/vsql.pdparams"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4843c62f",
   "metadata": {},
   "source": [
    "Next, the model can be loaded and tested."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "86d4405c",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/wangzihe/opt/anaconda3/envs/py37/lib/python3.7/site-packages/scipy/linalg/__init__.py:212: DeprecationWarning: The module numpy.dual is deprecated.  Instead of using dual, use the functions directly from numpy or scipy.\n",
      "  from numpy.dual import register_func\n",
      "/Users/wangzihe/opt/anaconda3/envs/py37/lib/python3.7/site-packages/scipy/sparse/sputils.py:16: DeprecationWarning: `np.typeDict` is a deprecated alias for `np.sctypeDict`.\n",
      "  supported_dtypes = [np.typeDict[x] for x in supported_dtypes]\n",
      "/Users/wangzihe/opt/anaconda3/envs/py37/lib/python3.7/site-packages/scipy/special/orthogonal.py:81: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.\n",
      "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
      "  from numpy import (exp, inf, pi, sqrt, floor, sin, cos, around, int,\n",
      "/Users/wangzihe/opt/anaconda3/envs/py37/lib/python3.7/site-packages/scipy/io/matlab/mio5.py:98: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\n",
      "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
      "  from .mio5_utils import VarReader5\n"
     ]
    }
   ],
   "source": [
    "# Import the required packages\n",
    "import os\n",
    "import warnings\n",
    "\n",
    "warnings.filterwarnings('ignore')\n",
    "os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'\n",
    "\n",
    "import numpy as np\n",
    "import paddle\n",
    "import paddle_quantum as pq\n",
    "import matplotlib.pyplot as plt\n",
    "from paddle_quantum.qml.vsql import VSQL\n",
    "\n",
    "# Set model parameters\n",
    "num_qubits = 10\n",
    "num_shadow = 2\n",
    "classes = [0, 1]\n",
    "num_classes = len(classes)\n",
    "depth = 1\n",
    "\n",
    "# Load the trained model\n",
    "model = VSQL(\n",
    "    num_qubits=num_qubits,\n",
    "    num_shadow=num_shadow,\n",
    "    num_classes=num_classes,\n",
    "    depth=depth,\n",
    ")\n",
    "state_dict = paddle.load('./vsql.pdparams')\n",
    "model.set_state_dict(state_dict)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6676b204",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2022-11-24 13:46:01--  https://ai-studio-static-online.cdn.bcebos.com/088dc9dbabf349c88d029dfd2e07827aa6e41ba958c5434bbd96bc167fc65347\n",
      "Resolving ai-studio-static-online.cdn.bcebos.com (ai-studio-static-online.cdn.bcebos.com)... 222.35.73.1\n",
      "Connecting to ai-studio-static-online.cdn.bcebos.com (ai-studio-static-online.cdn.bcebos.com)|222.35.73.1|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 290 [image/png]\n",
      "Saving to: ‘data-0.png’\n",
      "\n",
      "data-0.png          100%[===================>]     290  --.-KB/s    in 0s      \n",
      "\n",
      "2022-11-24 13:46:02 (138 MB/s) - ‘data-0.png’ saved [290/290]\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7fa1199f8710>"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAb/0lEQVR4nO3df3DV9b3n8dcBksMPk0NDyK8SaECFChK3VNIMSrFkSNJ7uYBsF9R2wXFgoQlbpFY3HQVte29anFFHh8LevS3RqYDSFaiMpcVgwloTHBDKsq25JE0lDklQZjknBAkx+ewfrKc9kojfwzl5J+H5mPnOkHO+n3zffjnjky/n8I3POecEAEAfG2I9AADg+kSAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACAiWHWA3xad3e3Tp8+raSkJPl8PutxAAAeOefU1tamrKwsDRnS+3VOvwvQ6dOnlZ2dbT0GAOAaNTU1ady4cb0+3+8ClJSUJEm6Q9/UMCUYTwMA8OpjdepNvRb+/3lv4hagTZs26cknn1RLS4tyc3P13HPPaebMmVdd98lfuw1Tgob5CBAADDj//w6jV3sbJS4fQnjppZe0bt06bdiwQe+8845yc3NVWFioM2fOxONwAIABKC4Beuqpp7RixQrdf//9uuWWW7RlyxaNHDlSv/zlL+NxOADAABTzAF26dElHjhxRQUHB3w4yZIgKCgpUU1Nzxf4dHR0KhUIRGwBg8It5gD788EN1dXUpPT094vH09HS1tLRcsX95ebkCgUB44xNwAHB9MP+HqGVlZQoGg+GtqanJeiQAQB+I+afgUlNTNXToULW2tkY83traqoyMjCv29/v98vv9sR4DANDPxfwKKDExUTNmzFBlZWX4se7ublVWVio/Pz/WhwMADFBx+XdA69at07Jly/TVr35VM2fO1DPPPKP29nbdf//98TgcAGAAikuAlixZog8++EDr169XS0uLbrvtNu3bt++KDyYAAK5fPuecsx7i74VCIQUCAc3RAu6EAAAD0MeuU1Xao2AwqOTk5F73M/8UHADg+kSAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYGGY9AK4vQ6dO9rzmtf0veV7T5bo9r5GkoT7vfyaL9lh9YeoflkW17lLzKM9rRr/r87xm7JZaz2vknPc16Je4AgIAmCBAAAATMQ/Q448/Lp/PF7FNmTIl1ocBAAxwcXkPaOrUqXr99df/dpBhvNUEAIgUlzIMGzZMGRkZ8fjWAIBBIi7vAZ08eVJZWVmaOHGi7rvvPp06darXfTs6OhQKhSI2AMDgF/MA5eXlqaKiQvv27dPmzZvV2NioO++8U21tbT3uX15erkAgEN6ys7NjPRIAoB+KeYCKi4v1rW99S9OnT1dhYaFee+01nTt3Ti+//HKP+5eVlSkYDIa3pqamWI8EAOiH4v7pgNGjR+vmm29WfX19j8/7/X75/f54jwEA6Gfi/u+Azp8/r4aGBmVmZsb7UACAASTmAXrooYdUXV2tv/71r3rrrbe0aNEiDR06VPfcc0+sDwUAGMBi/ldw77//vu655x6dPXtWY8eO1R133KHa2lqNHTs21ocCAAxgMQ/Qjh07Yv0tcZ3rdF19dqzuPjxWX/jfsyqsR/hMuWPWeF6T/S+HvB+oe3D9vg4W3AsOAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAR9x9IB0Ro/dDzkik7Szyv+c3Cpz2vkaSbExKjWofo/HH1c57XLPifSz2v6frzSc9rEH9cAQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEd8NGn+r68KznNTeu9b6mdN9/9bxGkn7/iy2e15zv7vC8puDYcs9r/nXarzyvmZ441POa/u69hWM9rxnH3bD7Ja6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT3IwU/Z7P7/e8ZtgPWuIwSc++07DY85rU+f/uec1jNy31vObdtd5v3ClJb//TU57XBIYMj+pYXq35zh7Pa37zb7dEdayuDz6Iah0+H66AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAAT3IwUfSqaG4v++8b/4HlN3ZRNntdI0q72FM9ruleMiOpYXnWd/IvnNTeVeF8jSaumL/C8ZvvE30V1LK8eCJzyvObVG74a3cG4F2lccQUEADBBgAAAJjwH6ODBg5o/f76ysrLk8/m0e/fuiOedc1q/fr0yMzM1YsQIFRQU6OTJk7GaFwAwSHgOUHt7u3Jzc7VpU89/x75x40Y9++yz2rJliw4dOqRRo0apsLBQFy9evOZhAQCDh+cPIRQXF6u4uLjH55xzeuaZZ/Too49qwYLLb2K+8MILSk9P1+7du7V0qfef6AgAGJxi+h5QY2OjWlpaVFBQEH4sEAgoLy9PNTU1Pa7p6OhQKBSK2AAAg19MA9TS0iJJSk9Pj3g8PT09/NynlZeXKxAIhLfs7OxYjgQA6KfMPwVXVlamYDAY3pqamqxHAgD0gZgGKCMjQ5LU2toa8Xhra2v4uU/z+/1KTk6O2AAAg19MA5STk6OMjAxVVlaGHwuFQjp06JDy8/NjeSgAwADn+VNw58+fV319ffjrxsZGHTt2TCkpKRo/frzWrl2rn/zkJ7rpppuUk5Ojxx57TFlZWVq4cGEs5wYADHCeA3T48GHddddd4a/XrVsnSVq2bJkqKir08MMPq729XStXrtS5c+d0xx13aN++fRo+fHjspgYADHg+55yzHuLvhUIhBQIBzdECDfMlWI+DGBs6dbLnNXt+vy0Ok/Tsll+Vel4z8ZGe/4nBQNb+H/M8r3nl6ac8r/nCkL75g+ltm9ZEtW7cv7wV40muDx+7TlVpj4LB4Ge+r2/+KTgAwPWJAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJjz/OAbgWjTcm9Inx/lBi/e7OUvSzf+92fOaj6M6Uv826teHPK8pXftPnte8mPN7z2ui8dGUi31yHHjDFRAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIKbkSJq3Xfc5nnNk//pec9rPuz6yPOaw+UzPK+RpFF/8X4TTlxW/+LN3hc92jc3I0X/xBUQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCm5Eian/5Lz7Pa4pHtnles6Rhkec1o37NTUWB/o4rIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABDcjhYaOHRvVus35v4rxJD37y69v8rwmXR/EYRIAscQVEADABAECAJjwHKCDBw9q/vz5ysrKks/n0+7duyOeX758uXw+X8RWVFQUq3kBAIOE5wC1t7crNzdXmzZt6nWfoqIiNTc3h7ft27df05AAgMHH84cQiouLVVxc/Jn7+P1+ZWRkRD0UAGDwi8t7QFVVVUpLS9PkyZO1evVqnT17ttd9Ozo6FAqFIjYAwOAX8wAVFRXphRdeUGVlpX72s5+purpaxcXF6urq6nH/8vJyBQKB8JadnR3rkQAA/VDM/x3Q0qVLw7++9dZbNX36dE2aNElVVVWaO3fuFfuXlZVp3bp14a9DoRARAoDrQNw/hj1x4kSlpqaqvr6+x+f9fr+Sk5MjNgDA4Bf3AL3//vs6e/asMjMz430oAMAA4vmv4M6fPx9xNdPY2Khjx44pJSVFKSkpeuKJJ7R48WJlZGSooaFBDz/8sG688UYVFhbGdHAAwMDmOUCHDx/WXXfdFf76k/dvli1bps2bN+v48eN6/vnnde7cOWVlZWnevHn68Y9/LL/fH7upAQADnucAzZkzR865Xp//3e9+d00Doe/5EhOiWnfXiIsxngTA9YR7wQEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMBEzH8kNwD0N8NPDrceAT3gCggAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMMHNSNHvhSZ3eV6THoc50D9sb/P+u/ulf62P6ljeX3nwgisgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAENyNFv/fLov/hec3Gqd+K6lhd/6cuqnWQzt3S3SfH+cnRf/C8Jqf1j3GYBNeKKyAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQ3I0W/N2t4p+c161/dFtWx/vPLpZ7X5Py3Gs9rgvd9zfOa9qy++/PivKW1ntfsSHva85oXQhM9r5n0zx2e1/TNbVLhFVdAAAATBAgAYMJTgMrLy3X77bcrKSlJaWlpWrhwoerqIn9+ysWLF1VSUqIxY8bohhtu0OLFi9Xa2hrToQEAA5+nAFVXV6ukpES1tbXav3+/Ojs7NW/ePLW3t4f3efDBB/Xqq69q586dqq6u1unTp3X33XfHfHAAwMDm6UMI+/bti/i6oqJCaWlpOnLkiGbPnq1gMKhf/OIX2rZtm77xjW9IkrZu3aovf/nLqq2t1de+5v2NVwDA4HRN7wEFg0FJUkpKiiTpyJEj6uzsVEFBQXifKVOmaPz48aqp6fmTQh0dHQqFQhEbAGDwizpA3d3dWrt2rWbNmqVp06ZJklpaWpSYmKjRo0dH7Juenq6WlpYev095ebkCgUB4y87OjnYkAMAAEnWASkpKdOLECe3YseOaBigrK1MwGAxvTU1N1/T9AAADQ1T/ELW0tFR79+7VwYMHNW7cuPDjGRkZunTpks6dOxdxFdTa2qqMjIwev5ff75ff749mDADAAObpCsg5p9LSUu3atUsHDhxQTk5OxPMzZsxQQkKCKisrw4/V1dXp1KlTys/Pj83EAIBBwdMVUElJibZt26Y9e/YoKSkp/L5OIBDQiBEjFAgE9MADD2jdunVKSUlRcnKy1qxZo/z8fD4BBwCI4ClAmzdvliTNmTMn4vGtW7dq+fLlkqSnn35aQ4YM0eLFi9XR0aHCwkL9/Oc/j8mwAIDBw+ecc9ZD/L1QKKRAIKA5WqBhvgTrca4PQ4ZGtazp5S97XvPH/OejOlZfueAueV5ztGOU5zXTEts8rwkMGe55TX+Xu2WN5zXZP34rDpMglj52narSHgWDQSUnJ/e6H/eCAwCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgImofiIqBpnurqiWJbzZ+11ue9XPfy7hSF+i5zWzhndGcaTBd2frqc+Xel4zsfxtz2v61e37cU24AgIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATHAzUkQt49lDntf841vLPa/Zu6vC8xpcm6kveL+xaM6jUdxYNMob4WJw4AoIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDBzUgRvShuJDn0vVbPa4q+s9Lzmv87OdHzGkl6YM1ez2v+7eQsz2s+/l8pntd88bkjntdEK+dSrfdFzsV+EAxqXAEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACa4GSn6VFfrGc9rhkWxZuwBz0skSb/ZPMbzmjS9G93BPOJWnxhsuAICAJggQAAAE54CVF5erttvv11JSUlKS0vTwoULVVdXF7HPnDlz5PP5IrZVq1bFdGgAwMDnKUDV1dUqKSlRbW2t9u/fr87OTs2bN0/t7e0R+61YsULNzc3hbePGjTEdGgAw8Hn6EMK+ffsivq6oqFBaWpqOHDmi2bNnhx8fOXKkMjIyYjMhAGBQuqb3gILBoCQpJSXyxwu/+OKLSk1N1bRp01RWVqYLFy70+j06OjoUCoUiNgDA4Bf1x7C7u7u1du1azZo1S9OmTQs/fu+992rChAnKysrS8ePH9cgjj6iurk6vvPJKj9+nvLxcTzzxRLRjAAAGKJ9zLqp/XrB69Wr99re/1Ztvvqlx48b1ut+BAwc0d+5c1dfXa9KkSVc839HRoY6OjvDXoVBI2dnZmqMFGuZLiGY0AIChj12nqrRHwWBQycnJve4X1RVQaWmp9u7dq4MHD35mfCQpLy9PknoNkN/vl9/vj2YMAMAA5ilAzjmtWbNGu3btUlVVlXJycq665tixY5KkzMzMqAYEAAxOngJUUlKibdu2ac+ePUpKSlJLS4skKRAIaMSIEWpoaNC2bdv0zW9+U2PGjNHx48f14IMPavbs2Zo+fXpc/gMAAAOTp/eAfD5fj49v3bpVy5cvV1NTk7797W/rxIkTam9vV3Z2thYtWqRHH330M/8e8O+FQiEFAgHeAwKAASou7wFdrVXZ2dmqrq728i0BANcp7gUHADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADAxzHqAT3POSZI+VqfkjIcBAHj2sTol/e3/573pdwFqa2uTJL2p14wnAQBci7a2NgUCgV6f97mrJaqPdXd36/Tp00pKSpLP54t4LhQKKTs7W01NTUpOTjaa0B7n4TLOw2Wch8s4D5f1h/PgnFNbW5uysrI0ZEjv7/T0uyugIUOGaNy4cZ+5T3Jy8nX9AvsE5+EyzsNlnIfLOA+XWZ+Hz7ry+QQfQgAAmCBAAAATAypAfr9fGzZskN/vtx7FFOfhMs7DZZyHyzgPlw2k89DvPoQAALg+DKgrIADA4EGAAAAmCBAAwAQBAgCYGDAB2rRpk770pS9p+PDhysvL09tvv209Up97/PHH5fP5IrYpU6ZYjxV3Bw8e1Pz585WVlSWfz6fdu3dHPO+c0/r165WZmakRI0aooKBAJ0+etBk2jq52HpYvX37F66OoqMhm2DgpLy/X7bffrqSkJKWlpWnhwoWqq6uL2OfixYsqKSnRmDFjdMMNN2jx4sVqbW01mjg+Ps95mDNnzhWvh1WrVhlN3LMBEaCXXnpJ69at04YNG/TOO+8oNzdXhYWFOnPmjPVofW7q1Klqbm4Ob2+++ab1SHHX3t6u3Nxcbdq0qcfnN27cqGeffVZbtmzRoUOHNGrUKBUWFurixYt9PGl8Xe08SFJRUVHE62P79u19OGH8VVdXq6SkRLW1tdq/f786Ozs1b948tbe3h/d58MEH9eqrr2rnzp2qrq7W6dOndffddxtOHXuf5zxI0ooVKyJeDxs3bjSauBduAJg5c6YrKSkJf93V1eWysrJceXm54VR9b8OGDS43N9d6DFOS3K5du8Jfd3d3u4yMDPfkk0+GHzt37pzz+/1u+/btBhP2jU+fB+ecW7ZsmVuwYIHJPFbOnDnjJLnq6mrn3OXf+4SEBLdz587wPn/+85+dJFdTU2M1Ztx9+jw459zXv/51973vfc9uqM+h318BXbp0SUeOHFFBQUH4sSFDhqigoEA1NTWGk9k4efKksrKyNHHiRN133306deqU9UimGhsb1dLSEvH6CAQCysvLuy5fH1VVVUpLS9PkyZO1evVqnT171nqkuAoGg5KklJQUSdKRI0fU2dkZ8XqYMmWKxo8fP6hfD58+D5948cUXlZqaqmnTpqmsrEwXLlywGK9X/e5mpJ/24YcfqqurS+np6RGPp6en69133zWaykZeXp4qKio0efJkNTc364knntCdd96pEydOKCkpyXo8Ey0tLZLU4+vjk+euF0VFRbr77ruVk5OjhoYG/fCHP1RxcbFqamo0dOhQ6/Firru7W2vXrtWsWbM0bdo0SZdfD4mJiRo9enTEvoP59dDTeZCke++9VxMmTFBWVpaOHz+uRx55RHV1dXrllVcMp43U7wOEvykuLg7/evr06crLy9OECRP08ssv64EHHjCcDP3B0qVLw7++9dZbNX36dE2aNElVVVWaO3eu4WTxUVJSohMnTlwX74N+lt7Ow8qVK8O/vvXWW5WZmam5c+eqoaFBkyZN6usxe9Tv/wouNTVVQ4cOveJTLK2trcrIyDCaqn8YPXq0br75ZtXX11uPYuaT1wCvjytNnDhRqampg/L1UVpaqr179+qNN96I+PEtGRkZunTpks6dOxex/2B9PfR2HnqSl5cnSf3q9dDvA5SYmKgZM2aosrIy/Fh3d7cqKyuVn59vOJm98+fPq6GhQZmZmdajmMnJyVFGRkbE6yMUCunQoUPX/evj/fff19mzZwfV68M5p9LSUu3atUsHDhxQTk5OxPMzZsxQQkJCxOuhrq5Op06dGlSvh6udh54cO3ZMkvrX68H6UxCfx44dO5zf73cVFRXuT3/6k1u5cqUbPXq0a2lpsR6tT33/+993VVVVrrGx0f3hD39wBQUFLjU11Z05c8Z6tLhqa2tzR48edUePHnWS3FNPPeWOHj3q3nvvPeeccz/96U/d6NGj3Z49e9zx48fdggULXE5Ojvvoo4+MJ4+tzzoPbW1t7qGHHnI1NTWusbHRvf766+4rX/mKu+mmm9zFixetR4+Z1atXu0Ag4Kqqqlxzc3N4u3DhQnifVatWufHjx7sDBw64w4cPu/z8fJefn284dexd7TzU19e7H/3oR+7w4cOusbHR7dmzx02cONHNnj3bePJIAyJAzjn33HPPufHjx7vExEQ3c+ZMV1tbaz1Sn1uyZInLzMx0iYmJ7otf/KJbsmSJq6+vtx4r7t544w0n6Ypt2bJlzrnLH8V+7LHHXHp6uvP7/W7u3Lmurq7Odug4+KzzcOHCBTdv3jw3duxYl5CQ4CZMmOBWrFgx6P6Q1tN/vyS3devW8D4fffSR++53v+u+8IUvuJEjR7pFixa55uZmu6Hj4Grn4dSpU2727NkuJSXF+f1+d+ONN7of/OAHLhgM2g7+Kfw4BgCAiX7/HhAAYHAiQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEz8P6zGwHOCsnIFAAAAAElFTkSuQmCC",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Load handwritten digit 0\n",
    "!wget https://ai-studio-static-online.cdn.bcebos.com/088dc9dbabf349c88d029dfd2e07827aa6e41ba958c5434bbd96bc167fc65347 -O data-0.png\n",
    "image0 = plt.imread('data-0.png')\n",
    "plt.imshow(image0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f637d0ca",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--2022-11-24 13:46:03--  https://ai-studio-static-online.cdn.bcebos.com/c755f723af3d4a1c8f113f8ac3bd365406decd1be70944b7b7b9d41413e8bc7a\n",
      "Resolving ai-studio-static-online.cdn.bcebos.com (ai-studio-static-online.cdn.bcebos.com)... 222.35.73.1\n",
      "Connecting to ai-studio-static-online.cdn.bcebos.com (ai-studio-static-online.cdn.bcebos.com)|222.35.73.1|:443... connected.\n",
      "HTTP request sent, awaiting response... 200 OK\n",
      "Length: 173 [image/png]\n",
      "Saving to: ‘data-1.png’\n",
      "\n",
      "data-1.png          100%[===================>]     173  --.-KB/s    in 0s      \n",
      "\n",
      "2022-11-24 13:46:03 (165 MB/s) - ‘data-1.png’ saved [173/173]\n",
      "\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<matplotlib.image.AxesImage at 0x7fa1008969d0>"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAaCElEQVR4nO3df2xU95nv8c8YzACJPa4x9njAUEMSaAO4WwquRUJI8QVcLcsvXUGSShAhENSkBZomcpVAaCu5JRKNErmgq5tCcxUgRQqwQVsqYrBRWpsIB0RRUwtbboGLbRp28RgTjMN89w820w7YocfM8HjM+yUdCc+cr+fJ6SlvDnM8+JxzTgAA3GMp1gMAAO5PBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJgYaD3ArSKRiC5cuKC0tDT5fD7rcQAAHjnn1N7erlAopJSUnq9z+lyALly4oLy8POsxAAB36dy5cxo5cmSPz/e5AKWlpUmSHtO3NVCpxtMAALz6TF36QP8R/f28JwkLUEVFhV599VW1tLSooKBAb7zxhqZOnXrHdZ//tdtApWqgjwABQNL5n08YvdPbKAm5CeGdd97R+vXrtXHjRn300UcqKCjQ7NmzdfHixUS8HAAgCSUkQFu2bNGKFSv07LPP6qtf/aq2bdumoUOH6le/+lUiXg4AkITiHqDr16+rrq5OxcXFf3+RlBQVFxerpqbmtv07OzsVDodjNgBA/xf3AH3yySe6ceOGcnJyYh7PyclRS0vLbfuXl5crEAhEN+6AA4D7g/kPopaVlamtrS26nTt3znokAMA9EPe74LKysjRgwAC1trbGPN7a2qpgMHjb/n6/X36/P95jAAD6uLhfAQ0aNEiTJ09WZWVl9LFIJKLKykoVFRXF++UAAEkqIT8HtH79ei1dulTf+MY3NHXqVL322mvq6OjQs88+m4iXAwAkoYQEaPHixfrb3/6mDRs2qKWlRV/72td08ODB225MAADcv3zOOWc9xD8Kh8MKBAKaoXl8EgIAJKHPXJeqtF9tbW1KT0/vcT/zu+AAAPcnAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwMRA6wGAvmTyiYjnNa2d6Z7XND+b63nNjY/PeF4D9GVcAQEATBAgAICJuAfolVdekc/ni9nGjx8f75cBACS5hLwH9Oijj+r999//+4sM5K0mAECshJRh4MCBCgaDifjWAIB+IiHvAZ05c0ahUEhjxozRM888o7Nnz/a4b2dnp8LhcMwGAOj/4h6gwsJC7dixQwcPHtTWrVvV1NSkxx9/XO3t7d3uX15erkAgEN3y8vLiPRIAoA/yOedcIl/g8uXLGj16tLZs2aLly5ff9nxnZ6c6OzujX4fDYeXl5WmG5mmgLzWRowG34eeAgLv3metSlfarra1N6ek9//8j4XcHZGRk6JFHHlFDQ0O3z/v9fvn9/kSPAQDoYxL+c0BXrlxRY2OjcnO9/4kPANB/xT1Azz//vKqrq/WXv/xFf/jDH7RgwQINGDBATz31VLxfCgCQxOL+V3Dnz5/XU089pUuXLmn48OF67LHHVFtbq+HDh8f7pQAASSzuAdq9e3e8vyXQp23Lq/a8Ztzq73pe8/D3PC8B+jQ+Cw4AYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMJHwf5AOSCb/vvsxz2t+8r2TntekDLvueQ3Q33AFBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABN8GjZwlyJy1iMASYkrIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABB9GCvyDEUfaPa9J+Z7P85qPZ/xfz2v+VZM9rwH6Mq6AAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATfBgp8I8+/KPnJRG5XqyJeF5zaXmR5zXD3qzxvAa4V7gCAgCYIEAAABOeA3T06FHNnTtXoVBIPp9P+/bti3neOacNGzYoNzdXQ4YMUXFxsc6cOROveQEA/YTnAHV0dKigoEAVFRXdPr9582a9/vrr2rZtm44dO6YHHnhAs2fP1rVr1+56WABA/+H5JoSSkhKVlJR0+5xzTq+99ppeeuklzZs3T5L01ltvKScnR/v27dOSJUvubloAQL8R1/eAmpqa1NLSouLi4uhjgUBAhYWFqqnp/m6czs5OhcPhmA0A0P/FNUAtLS2SpJycnJjHc3Jyos/dqry8XIFAILrl5eXFcyQAQB9lfhdcWVmZ2traotu5c+esRwIA3ANxDVAwGJQktba2xjze2toafe5Wfr9f6enpMRsAoP+La4Dy8/MVDAZVWVkZfSwcDuvYsWMqKvL+U9wAgP7L811wV65cUUNDQ/TrpqYmnTx5UpmZmRo1apTWrl2rn/70p3r44YeVn5+vl19+WaFQSPPnz4/n3ACAJOc5QMePH9eTTz4Z/Xr9+vWSpKVLl2rHjh164YUX1NHRoZUrV+ry5ct67LHHdPDgQQ0ePDh+UwMAkp7POef9kxQTKBwOKxAIaIbmaaAv1Xoc4I4ad37N85qPn3jT85qNF//F85q6fzG/zwj3oc9cl6q0X21tbV/4vj5nJwDABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEx4/ucYANy9iCLWIwDmuAICAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEzwYaTAXXqwZqjnNSlPeP+z3wj/f3leczI93/MaSboRDvdqHeAFV0AAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAk+jBS4S6Ffn/a8pmLVWM9rSjMaPa/ZO/l/eV4jSQOOfNSrdYAXXAEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACb4MFLgLt0Ihz2vuXg93fOaFPk8r/n/Twz2vEaSRh3p1TLAE66AAAAmCBAAwITnAB09elRz585VKBSSz+fTvn37Yp5ftmyZfD5fzDZnzpx4zQsA6Cc8B6ijo0MFBQWqqKjocZ85c+aoubk5uu3ateuuhgQA9D+eb0IoKSlRSUnJF+7j9/sVDAZ7PRQAoP9LyHtAVVVVys7O1rhx47R69WpdunSpx307OzsVDodjNgBA/xf3AM2ZM0dvvfWWKisr9fOf/1zV1dUqKSnRjRs3ut2/vLxcgUAguuXl5cV7JABAHxT3nwNasmRJ9NcTJ07UpEmTNHbsWFVVVWnmzJm37V9WVqb169dHvw6Hw0QIAO4DCb8Ne8yYMcrKylJDQ0O3z/v9fqWnp8dsAID+L+EBOn/+vC5duqTc3NxEvxQAIIl4/iu4K1euxFzNNDU16eTJk8rMzFRmZqY2bdqkRYsWKRgMqrGxUS+88IIeeughzZ49O66DAwCSm+cAHT9+XE8++WT068/fv1m6dKm2bt2qU6dO6de//rUuX76sUCikWbNm6Sc/+Yn8fn/8pgYAJD3PAZoxY4accz0+/7vf/e6uBgLuB+/9ZYLnNZuyT3he0/Xwp57XAPcKnwUHADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAE3H/J7kB3JmrzfC8JmWqL/6DAIa4AgIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATPBhpECSiMh5XvP42IZevdaFXq0CvOEKCABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwwYeRAkkiRT7Pa/5PXlWvXutfNblX6wAvuAICAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEzwYaRAkojI9WJNJAGTAPHBFRAAwAQBAgCY8BSg8vJyTZkyRWlpacrOztb8+fNVX18fs8+1a9dUWlqqYcOG6cEHH9SiRYvU2toa16EBAMnPU4Cqq6tVWlqq2tpaHTp0SF1dXZo1a5Y6Ojqi+6xbt07vvfee9uzZo+rqal24cEELFy6M++AAgOTm6SaEgwcPxny9Y8cOZWdnq66uTtOnT1dbW5vefPNN7dy5U9/61rckSdu3b9dXvvIV1dbW6pvf/Gb8JgcAJLW7eg+ora1NkpSZmSlJqqurU1dXl4qLi6P7jB8/XqNGjVJNTU2336Ozs1PhcDhmAwD0f70OUCQS0dq1azVt2jRNmDBBktTS0qJBgwYpIyMjZt+cnBy1tLR0+33Ky8sVCASiW15eXm9HAgAkkV4HqLS0VKdPn9bu3bvvaoCysjK1tbVFt3Pnzt3V9wMAJIde/SDqmjVrdODAAR09elQjR46MPh4MBnX9+nVdvnw55iqotbVVwWCw2+/l9/vl9/t7MwYAIIl5ugJyzmnNmjXau3evDh8+rPz8/JjnJ0+erNTUVFVWVkYfq6+v19mzZ1VUVBSfiQEA/YKnK6DS0lLt3LlT+/fvV1paWvR9nUAgoCFDhigQCGj58uVav369MjMzlZ6erueee05FRUXcAQcAiOEpQFu3bpUkzZgxI+bx7du3a9myZZKkX/ziF0pJSdGiRYvU2dmp2bNn65e//GVchgUA9B+eAuTcnT8McfDgwaqoqFBFRUWvhwL6uxFH2j2vSf3+AM9rurx/filwz/BZcAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADDRq38RFcBd+vCPnpd0uRue10QU8bwGuFe4AgIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATPBhpECSePKP/9vzmiMT9/TqtT6dN9XzmiH7P+zVa+H+xRUQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACYIEADABAECAJggQAAAEwQIAGCCDyMFkoR/85c8r4n8v0ivXus/x3v/rWHE/l69FO5jXAEBAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwQYAAACb4MFIgSQw8XOd5zb+NmNKr1xqhP/RqHeAFV0AAABMECABgwlOAysvLNWXKFKWlpSk7O1vz589XfX19zD4zZsyQz+eL2VatWhXXoQEAyc9TgKqrq1VaWqra2lodOnRIXV1dmjVrljo6OmL2W7FihZqbm6Pb5s2b4zo0ACD5eboJ4eDBgzFf79ixQ9nZ2aqrq9P06dOjjw8dOlTBYDA+EwIA+qW7eg+ora1NkpSZmRnz+Ntvv62srCxNmDBBZWVlunr1ao/fo7OzU+FwOGYDAPR/vb4NOxKJaO3atZo2bZomTJgQffzpp5/W6NGjFQqFdOrUKb344ouqr6/Xu+++2+33KS8v16ZNm3o7BgAgSfmcc643C1evXq3f/va3+uCDDzRy5Mge9zt8+LBmzpyphoYGjR079rbnOzs71dnZGf06HA4rLy9PMzRPA32pvRkNAGDoM9elKu1XW1ub0tPTe9yvV1dAa9as0YEDB3T06NEvjI8kFRYWSlKPAfL7/fL7/b0ZAwCQxDwFyDmn5557Tnv37lVVVZXy8/PvuObkyZOSpNzc3F4NCADonzwFqLS0VDt37tT+/fuVlpamlpYWSVIgENCQIUPU2NionTt36tvf/raGDRumU6dOad26dZo+fbomTZqUkP8AAEBy8vQekM/n6/bx7du3a9myZTp37py+853v6PTp0+ro6FBeXp4WLFigl1566Qv/HvAfhcNhBQIB3gMCgCSVkPeA7tSqvLw8VVdXe/mWAID7FJ8FBwAwQYAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCYIEAAABMECABgggABAEwQIACACQIEADBBgAAAJggQAMAEAQIAmCBAAAATBAgAYIIAAQBMECAAgAkCBAAwMdB6gFs55yRJn6lLcsbDAAA8+0xdkv7++3lP+lyA2tvbJUkf6D+MJwEA3I329nYFAoEen/e5OyXqHotEIrpw4YLS0tLk8/linguHw8rLy9O5c+eUnp5uNKE9jsNNHIebOA43cRxu6gvHwTmn9vZ2hUIhpaT0/E5Pn7sCSklJ0ciRI79wn/T09Pv6BPscx+EmjsNNHIebOA43WR+HL7ry+Rw3IQAATBAgAICJpAqQ3+/Xxo0b5ff7rUcxxXG4ieNwE8fhJo7DTcl0HPrcTQgAgPtDUl0BAQD6DwIEADBBgAAAJggQAMBE0gSooqJCX/7ylzV48GAVFhbqww8/tB7pnnvllVfk8/litvHjx1uPlXBHjx7V3LlzFQqF5PP5tG/fvpjnnXPasGGDcnNzNWTIEBUXF+vMmTM2wybQnY7DsmXLbjs/5syZYzNsgpSXl2vKlClKS0tTdna25s+fr/r6+ph9rl27ptLSUg0bNkwPPvigFi1apNbWVqOJE+OfOQ4zZsy47XxYtWqV0cTdS4oAvfPOO1q/fr02btyojz76SAUFBZo9e7YuXrxoPdo99+ijj6q5uTm6ffDBB9YjJVxHR4cKCgpUUVHR7fObN2/W66+/rm3btunYsWN64IEHNHv2bF27du0eT5pYdzoOkjRnzpyY82PXrl33cMLEq66uVmlpqWpra3Xo0CF1dXVp1qxZ6ujoiO6zbt06vffee9qzZ4+qq6t14cIFLVy40HDq+PtnjoMkrVixIuZ82Lx5s9HEPXBJYOrUqa60tDT69Y0bN1woFHLl5eWGU917GzdudAUFBdZjmJLk9u7dG/06Eom4YDDoXn311ehjly9fdn6/3+3atctgwnvj1uPgnHNLly518+bNM5nHysWLF50kV11d7Zy7+b99amqq27NnT3Sfjz/+2ElyNTU1VmMm3K3HwTnnnnjiCff973/fbqh/Qp+/Arp+/brq6upUXFwcfSwlJUXFxcWqqakxnMzGmTNnFAqFNGbMGD3zzDM6e/as9Uimmpqa1NLSEnN+BAIBFRYW3pfnR1VVlbKzszVu3DitXr1aly5dsh4podra2iRJmZmZkqS6ujp1dXXFnA/jx4/XqFGj+vX5cOtx+Nzbb7+trKwsTZgwQWVlZbp69arFeD3qcx9GeqtPPvlEN27cUE5OTszjOTk5+vOf/2w0lY3CwkLt2LFD48aNU3NzszZt2qTHH39cp0+fVlpamvV4JlpaWiSp2/Pj8+fuF3PmzNHChQuVn5+vxsZG/ehHP1JJSYlqamo0YMAA6/HiLhKJaO3atZo2bZomTJgg6eb5MGjQIGVkZMTs25/Ph+6OgyQ9/fTTGj16tEKhkE6dOqUXX3xR9fX1evfddw2njdXnA4S/Kykpif560qRJKiws1OjRo/Wb3/xGy5cvN5wMfcGSJUuiv544caImTZqksWPHqqqqSjNnzjScLDFKS0t1+vTp++J90C/S03FYuXJl9NcTJ05Ubm6uZs6cqcbGRo0dO/Zej9mtPv9XcFlZWRowYMBtd7G0trYqGAwaTdU3ZGRk6JFHHlFDQ4P1KGY+Pwc4P243ZswYZWVl9cvzY82aNTpw4ICOHDkS88+3BINBXb9+XZcvX47Zv7+eDz0dh+4UFhZKUp86H/p8gAYNGqTJkyersrIy+lgkElFlZaWKiooMJ7N35coVNTY2Kjc313oUM/n5+QoGgzHnRzgc1rFjx+778+P8+fO6dOlSvzo/nHNas2aN9u7dq8OHDys/Pz/m+cmTJys1NTXmfKivr9fZs2f71flwp+PQnZMnT0pS3zofrO+C+Gfs3r3b+f1+t2PHDvenP/3JrVy50mVkZLiWlhbr0e6pH/zgB66qqso1NTW53//+9664uNhlZWW5ixcvWo+WUO3t7e7EiRPuxIkTTpLbsmWLO3HihPvrX//qnHPuZz/7mcvIyHD79+93p06dcvPmzXP5+fnu008/NZ48vr7oOLS3t7vnn3/e1dTUuKamJvf++++7r3/96+7hhx92165dsx49blavXu0CgYCrqqpyzc3N0e3q1avRfVatWuVGjRrlDh8+7I4fP+6KiopcUVGR4dTxd6fj0NDQ4H784x+748ePu6amJrd//343ZswYN336dOPJYyVFgJxz7o033nCjRo1ygwYNclOnTnW1tbXWI91zixcvdrm5uW7QoEFuxIgRbvHixa6hocF6rIQ7cuSIk3TbtnTpUufczVuxX375ZZeTk+P8fr+bOXOmq6+vtx06Ab7oOFy9etXNmjXLDR8+3KWmprrRo0e7FStW9Ls/pHX33y/Jbd++PbrPp59+6r773e+6L33pS27o0KFuwYIFrrm52W7oBLjTcTh79qybPn26y8zMdH6/3z300EPuhz/8oWtra7Md/Bb8cwwAABN9/j0gAED/RIAAACYIEADABAECAJggQAAAEwQIAGCCAAEATBAgAIAJAgQAMEGAAAAmCBAAwAQBAgCY+G/lgUw3G3htogAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Load handwritten digit 1\n",
    "!wget https://ai-studio-static-online.cdn.bcebos.com/c755f723af3d4a1c8f113f8ac3bd365406decd1be70944b7b7b9d41413e8bc7a -O data-1.png\n",
    "image1 = plt.imread('data-1.png')\n",
    "plt.imshow(image1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "e40d847a",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/wangzihe/opt/anaconda3/envs/py37/lib/python3.7/site-packages/paddle/tensor/creation.py:125: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. \n",
      "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
      "  if data.dtype == np.object:\n",
      "/Users/wangzihe/opt/anaconda3/envs/py37/lib/python3.7/site-packages/paddle/fluid/framework.py:1104: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.\n",
      "Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations\n",
      "  elif dtype == np.bool:\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For handwritten digits 0, the model has 89.22% confidence that it is 0 and 10.78% confidence that it is 1.\n",
      "For handwritten digits 1, the model has 18.29% confidence that it is 0 and 81.71% confidence that it is 1.\n"
     ]
    }
   ],
   "source": [
    "# Encoding images into quantum states\n",
    "test_data = [np.array(image0).flatten(), np.array(image1).flatten()]\n",
    "test_data = [np.pad(datum, pad_width=(0, 2 ** num_qubits - datum.size)) for datum in test_data]\n",
    "test_data = [paddle.to_tensor(datum / np.linalg.norm(datum), dtype=pq.get_dtype()) for datum in test_data]\n",
    "# Use the model to make predictions and get the corresponding probability\n",
    "test_output = model(test_data)\n",
    "test_prob = paddle.nn.functional.softmax(test_output)\n",
    "print(\n",
    "    f\"For handwritten digits 0, \"\n",
    "    f\"the model has {test_prob[0][0].item():3.2%} confidence that it is 0 \"\n",
    "    f\"and {test_prob[0][1].item():3.2%} confidence that it is 1.\"\n",
    ")\n",
    "print(\n",
    "    f\"For handwritten digits 1, \"\n",
    "    f\"the model has {test_prob[1][0].item():3.2%} confidence that it is 0 \"\n",
    "    f\"and {test_prob[1][1].item():3.2%} confidence that it is 1.\"\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3990efae",
   "metadata": {},
   "source": [
    "## 5. Note\n",
    "\n",
    "The model we provide is a binary classification model that can only be used to distinguish handwritten digits 0 and 1. For other classification tasks, it needs to be retrained."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4fe699ea",
   "metadata": {},
   "source": [
    "## 6. Related papers and citations\n",
    "\n",
    "```\n",
    "@inproceedings{li2021vsql,\n",
    "  title={VSQL: Variational shadow quantum learning for classification},\n",
    "  author={Li, Guangxi and Song, Zhixin and Wang, Xin},\n",
    "  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},\n",
    "  volume={35},\n",
    "  number={9},\n",
    "  pages={8357--8365},\n",
    "  year={2021}\n",
    "}\n",
    "```"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.7.15 ('py37')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.15"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {},
   "toc_section_display": true,
   "toc_window_display": false
  },
  "vscode": {
   "interpreter": {
    "hash": "49b49097121cb1ab3a8a640b71467d7eda4aacc01fc9ff84d52fcb3bd4007bf1"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}