infer.py 4.6 KB
Newer Older
1 2 3 4 5 6
"""
    Contains infering script for machine translation with external memory.
"""
import distutils.util
import argparse
import gzip
7
import random
8

9 10
import paddle.v2 as paddle
from external_memory import ExternalMemory
11 12
from model import memory_enhanced_seq2seq
from data_utils import reader_append_wrapper
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    "--dict_size",
    default=30000,
    type=int,
    help="Vocabulary size. (default: %(default)s)")
parser.add_argument(
    "--word_vec_dim",
    default=512,
    type=int,
    help="Word embedding size. (default: %(default)s)")
parser.add_argument(
    "--hidden_size",
    default=1024,
    type=int,
    help="Hidden cell number in RNN. (default: %(default)s)")
parser.add_argument(
    "--memory_slot_num",
    default=8,
    type=int,
    help="External memory slot number. (default: %(default)s)")
parser.add_argument(
    "--beam_size",
    default=3,
    type=int,
    help="Beam search width. (default: %(default)s)")
parser.add_argument(
    "--use_gpu",
    default=False,
    type=distutils.util.strtobool,
    help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
    "--trainer_count",
    default=1,
    type=int,
    help="Trainer number. (default: %(default)s)")
parser.add_argument(
    "--batch_size",
    default=5,
    type=int,
    help="Batch size. (default: %(default)s)")
parser.add_argument(
    "--infer_data_num",
    default=3,
    type=int,
    help="Instance num to infer. (default: %(default)s)")
parser.add_argument(
    "--model_filepath",
    default="checkpoints/params.latest.tar.gz",
    type=str,
    help="Model filepath. (default: %(default)s)")
parser.add_argument(
    "--memory_perturb_stddev",
    default=0.1,
    type=float,
    help="Memory perturb stddev for memory initialization."
    "(default: %(default)s)")
args = parser.parse_args()


def parse_beam_search_result(beam_result, dictionary):
    """
    Beam search result parser.
    """
    sentence_list = []
    sentence = []
    for word in beam_result[1]:
        if word != -1:
            sentence.append(word)
        else:
84 85
            sentence_list.append(' '.join(
                [dictionary.get(word) for word in sentence[1:]]))
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            sentence = []
    beam_probs = beam_result[0]
    beam_size = len(beam_probs[0])
    beam_sentences = [
        sentence_list[i:i + beam_size]
        for i in range(0, len(sentence_list), beam_size)
    ]
    return beam_probs, beam_sentences


def infer():
    """
    For inferencing.
    """
    # create network config
    source_words = paddle.layer.data(
        name="source_words",
        type=paddle.data_type.integer_value_sequence(args.dict_size))
    beam_gen = memory_enhanced_seq2seq(
        encoder_input=source_words,
        decoder_input=None,
        decoder_target=None,
        hidden_size=args.hidden_size,
        word_vec_dim=args.word_vec_dim,
        dict_size=args.dict_size,
        is_generating=True,
        beam_size=args.beam_size)

    # load parameters
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open(args.model_filepath))

    # prepare infer data
    infer_data = []
    random.seed(0)  # for keeping consitancy for multiple runs
    bounded_memory_perturbation = [[
122 123
        random.gauss(0, args.memory_perturb_stddev)
        for i in xrange(args.hidden_size)
124 125
    ] for j in xrange(args.memory_slot_num)]
    test_append_reader = reader_append_wrapper(
126
        reader=paddle.dataset.wmt14.test(args.dict_size),
127 128 129
        append_tuple=(bounded_memory_perturbation, ))
    for i, item in enumerate(test_append_reader()):
        if i < args.infer_data_num:
130 131 132
            infer_data.append((
                item[0],
                item[3], ))
133 134 135 136 137 138 139 140

    # run inference
    beam_result = paddle.infer(
        output_layer=beam_gen,
        parameters=parameters,
        input=infer_data,
        field=['prob', 'id'])

141 142
    # parse beam result and print
    source_dict, target_dict = paddle.dataset.wmt14.get_dict(args.dict_size)
143 144 145 146 147 148 149 150 151 152 153
    beam_probs, beam_sentences = parse_beam_search_result(beam_result,
                                                          target_dict)
    for i in xrange(args.infer_data_num):
        print "\n***************************************************\n"
        print "src:", ' '.join(
            [source_dict.get(word) for word in infer_data[i][0]]), "\n"
        for j in xrange(args.beam_size):
            print "prob = %f : %s" % (beam_probs[i][j], beam_sentences[i][j])


def main():
154
    paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
155 156 157 158 159
    infer()


if __name__ == '__main__':
    main()