atari.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
# -*- coding: utf-8 -*-

import numpy as np
import os
import cv2
import threading

import gym
from gym import spaces
from gym.envs.atari.atari_env import ACTION_MEANING

X
Xin Pan 已提交
12
from atari_py import ALEInterface
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

__all__ = ['AtariPlayer']

ROM_URL = "https://github.com/openai/atari-py/tree/master/atari_py/atari_roms"
_ALE_LOCK = threading.Lock()
"""
The following AtariPlayer are copied or modified from tensorpack/tensorpack:
    https://github.com/tensorpack/tensorpack/blob/master/examples/DeepQNetwork/atari.py
"""


class AtariPlayer(gym.Env):
    """
    A wrapper for ALE emulator, with configurations to mimic DeepMind DQN settings.
    Info:
        score: the accumulated reward in the current game
        gameOver: True when the current game is Over
    """

    def __init__(self,
                 rom_file,
                 viz=0,
                 frame_skip=4,
                 nullop_start=30,
                 live_lost_as_eoe=True,
                 max_num_frames=0):
        """
        Args:
            rom_file: path to the rom
            frame_skip: skip every k frames and repeat the action
            viz: visualization to be done.
                Set to 0 to disable.
                Set to a positive number to be the delay between frames to show.
                Set to a string to be a directory to store frames.
            nullop_start: start with random number of null ops.
            live_losts_as_eoe: consider lost of lives as end of episode. Useful for training.
            max_num_frames: maximum number of frames per episode.
        """
        super(AtariPlayer, self).__init__()
        assert os.path.isfile(rom_file), \
            "rom {} not found. Please download at {}".format(rom_file, ROM_URL)

        try:
            ALEInterface.setLoggerMode(ALEInterface.Logger.Error)
        except AttributeError:
R
robot 已提交
58
            print("You're not using latest ALE")
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

        # avoid simulator bugs: https://github.com/mgbellemare/Arcade-Learning-Environment/issues/86
        with _ALE_LOCK:
            self.ale = ALEInterface()
            self.ale.setInt(b"random_seed", np.random.randint(0, 30000))
            self.ale.setInt(b"max_num_frames_per_episode", max_num_frames)
            self.ale.setBool(b"showinfo", False)

            self.ale.setInt(b"frame_skip", 1)
            self.ale.setBool(b'color_averaging', False)
            # manual.pdf suggests otherwise.
            self.ale.setFloat(b'repeat_action_probability', 0.0)

            # viz setup
            if isinstance(viz, str):
                assert os.path.isdir(viz), viz
                self.ale.setString(b'record_screen_dir', viz)
                viz = 0
            if isinstance(viz, int):
                viz = float(viz)
            self.viz = viz
            if self.viz and isinstance(self.viz, float):
                self.windowname = os.path.basename(rom_file)
                cv2.startWindowThread()
                cv2.namedWindow(self.windowname)

            self.ale.loadROM(rom_file.encode('utf-8'))
        self.width, self.height = self.ale.getScreenDims()
        self.actions = self.ale.getMinimalActionSet()

        self.live_lost_as_eoe = live_lost_as_eoe
        self.frame_skip = frame_skip
        self.nullop_start = nullop_start

        self.action_space = spaces.Discrete(len(self.actions))
        self.observation_space = spaces.Box(low=0,
                                            high=255,
                                            shape=(self.height, self.width),
                                            dtype=np.uint8)
        self._restart_episode()

    def get_action_meanings(self):
        return [ACTION_MEANING[i] for i in self.actions]

    def _grab_raw_image(self):
        """
        :returns: the current 3-channel image
        """
        m = self.ale.getScreenRGB()
        return m.reshape((self.height, self.width, 3))

    def _current_state(self):
        """
        returns: a gray-scale (h, w) uint8 image
        """
        ret = self._grab_raw_image()
        # avoid missing frame issue: max-pooled over the last screen
        ret = np.maximum(ret, self.last_raw_screen)
        if self.viz:
            if isinstance(self.viz, float):
                cv2.imshow(self.windowname, ret)
                cv2.waitKey(int(self.viz * 1000))
        ret = ret.astype('float32')
        # 0.299,0.587.0.114. same as rgb2y in torch/image
        ret = cv2.cvtColor(ret, cv2.COLOR_RGB2GRAY)
        return ret.astype('uint8')  # to save some memory

    def _restart_episode(self):
        with _ALE_LOCK:
            self.ale.reset_game()

        # random null-ops start
        n = np.random.randint(self.nullop_start)
        self.last_raw_screen = self._grab_raw_image()
        for k in range(n):
            if k == n - 1:
                self.last_raw_screen = self._grab_raw_image()
            self.ale.act(0)

    def reset(self):
        if self.ale.game_over():
            self._restart_episode()
        return self._current_state()

    def step(self, act):
        oldlives = self.ale.lives()
        r = 0
        for k in range(self.frame_skip):
            if k == self.frame_skip - 1:
                self.last_raw_screen = self._grab_raw_image()
            r += self.ale.act(self.actions[act])
            newlives = self.ale.lives()
            if self.ale.game_over() or \
                    (self.live_lost_as_eoe and newlives < oldlives):
                break

        isOver = self.ale.game_over()
        if self.live_lost_as_eoe:
            isOver = isOver or newlives < oldlives

        info = {'ale.lives': newlives}
        return self._current_state(), r, isOver, info