train.py 6.6 KB
Newer Older
1 2 3 4
import os
import numpy as np
import time
import sys
W
whs 已提交
5
import paddle
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
import paddle.fluid as fluid
from resnet import TSN_ResNet
import reader

import argparse
import functools
from paddle.fluid.framework import Parameter
from utility import add_arguments, print_arguments

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',       int,    128,            "Minibatch size.")
add_arg('num_layers',       int,    50,             "How many layers for ResNet model.")
add_arg('with_mem_opt',     bool,   True,           "Whether to use memory optimization or not.")
add_arg('num_epochs',       int,    60,             "Number of epochs.")
add_arg('class_dim',        int,    101,            "Number of class.")
add_arg('seg_num',          int,    7,              "Number of segments.")
add_arg('image_shape',      str,    "3,224,224",    "Input image size.")
add_arg('model_save_dir',   str,    "output",       "Model save directory.")
add_arg('pretrained_model', str,    None,           "Whether to use pretrained model.")
add_arg('total_videos',     int,    9537,           "Training video number.")
add_arg('lr_init',          float,  0.01,           "Set initial learning rate.")
# yapf: enable


def train(args):
    # parameters from arguments
    seg_num = args.seg_num
    class_dim = args.class_dim
    num_layers = args.num_layers
    num_epochs = args.num_epochs
    batch_size = args.batch_size
    pretrained_model = args.pretrained_model
    model_save_dir = args.model_save_dir

    image_shape = [int(m) for m in args.image_shape.split(",")]
    image_shape = [seg_num] + image_shape

    # model definition
    model = TSN_ResNet(layers=num_layers, seg_num=seg_num)

    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    out = model.net(input=image, class_dim=class_dim)
    cost = fluid.layers.cross_entropy(input=out, label=label)

    avg_cost = fluid.layers.mean(x=cost)
    acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

    # for test
    inference_program = fluid.default_main_program().clone(for_test=True)

    # learning rate strategy
    epoch_points = [num_epochs / 3, num_epochs * 2 / 3]
    total_videos = args.total_videos
    step = int(total_videos / batch_size + 1)
    bd = [e * step for e in epoch_points]

    lr_init = args.lr_init
    lr = [lr_init, lr_init / 10, lr_init / 100]

    # initialize optimizer
    optimizer = fluid.optimizer.Momentum(
        learning_rate=fluid.layers.piecewise_decay(
            boundaries=bd, values=lr),
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(1e-4))

    opts = optimizer.minimize(avg_cost)
    if args.with_mem_opt:
        fluid.memory_optimize(fluid.default_main_program())

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    def is_parameter(var):
        if isinstance(var, Parameter):
            return isinstance(var, Parameter) and (not ("fc_0" in var.name))

    if pretrained_model is not None:
        vars = filter(is_parameter, inference_program.list_vars())
        fluid.io.load_vars(exe, pretrained_model, vars=vars)

    # reader
94
    train_reader = paddle.batch(reader.train(seg_num), batch_size=batch_size, drop_last=True)
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    # test in single GPU
    test_reader = paddle.batch(reader.test(seg_num), batch_size=batch_size / 16)
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)

    fetch_list = [avg_cost.name, acc_top1.name, acc_top5.name]

    # train
    for pass_id in range(num_epochs):
        train_info = [[], [], []]
        test_info = [[], [], []]
        for batch_id, data in enumerate(train_reader()):
            t1 = time.time()
            loss, acc1, acc5 = train_exe.run(fetch_list, feed=feeder.feed(data))
            t2 = time.time()
            period = t2 - t1
            loss = np.mean(np.array(loss))
            acc1 = np.mean(np.array(acc1))
            acc5 = np.mean(np.array(acc5))
            train_info[0].append(loss)
            train_info[1].append(acc1)
            train_info[2].append(acc5)

            if batch_id % 10 == 0:
                print(
                    "[TRAIN] Pass: {0}\ttrainbatch: {1}\tloss: {2}\tacc1: {3}\tacc5: {4}\ttime: {5}"
                    .format(pass_id, batch_id, '%.6f' % loss, acc1, acc5,
                            "%2.2f sec" % period))
                sys.stdout.flush()

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()

        # test
        cnt = 0
        for batch_id, data in enumerate(test_reader()):
            t1 = time.time()
            loss, acc1, acc5 = exe.run(inference_program,
                                       fetch_list=fetch_list,
                                       feed=feeder.feed(data))
            t2 = time.time()
            period = t2 - t1
            loss = np.mean(loss)
            acc1 = np.mean(acc1)
            acc5 = np.mean(acc5)
            test_info[0].append(loss * len(data))
            test_info[1].append(acc1 * len(data))
            test_info[2].append(acc5 * len(data))
            cnt += len(data)
            if batch_id % 10 == 0:
                print(
                    "[TEST] Pass: {0}\ttestbatch: {1}\tloss: {2}\tacc1: {3}\tacc5: {4}\ttime: {5}"
                    .format(pass_id, batch_id, '%.6f' % loss, acc1, acc5,
                            "%2.2f sec" % period))
                sys.stdout.flush()

        test_loss = np.sum(test_info[0]) / cnt
        test_acc1 = np.sum(test_info[1]) / cnt
        test_acc5 = np.sum(test_info[2]) / cnt

        print(
            "+ End pass: {0}, train_loss: {1}, train_acc1: {2}, train_acc5: {3}"
            .format(pass_id, '%.3f' % train_loss, '%.3f' % train_acc1, '%.3f' %
                    train_acc5))
        print("+ End pass: {0}, test_loss: {1}, test_acc1: {2}, test_acc5: {3}"
              .format(pass_id, '%.3f' % test_loss, '%.3f' % test_acc1, '%.3f' %
                      test_acc5))
        sys.stdout.flush()

        # save model
        model_path = os.path.join(model_save_dir, str(pass_id))
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        fluid.io.save_persistables(exe, model_path)


def main():
    args = parser.parse_args()
    print_arguments(args)
    train(args)


if __name__ == '__main__':
    main()