image_util.py 18.8 KB
Newer Older
B
baiyfbupt 已提交
1 2 3 4
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

5 6 7 8 9
from PIL import Image, ImageEnhance, ImageDraw
from PIL import ImageFile
import numpy as np
import random
import math
10
import cv2
11 12 13 14 15

ImageFile.LOAD_TRUNCATED_IMAGES = True  #otherwise IOError raised image file is truncated


class sampler():
Q
qingqing01 已提交
16 17 18 19 20 21 22 23 24
    def __init__(self,
                 max_sample,
                 max_trial,
                 min_scale,
                 max_scale,
                 min_aspect_ratio,
                 max_aspect_ratio,
                 min_jaccard_overlap,
                 max_jaccard_overlap,
25 26
                 min_object_coverage,
                 max_object_coverage,
Q
qingqing01 已提交
27
                 use_square=False):
28 29 30 31 32 33 34 35
        self.max_sample = max_sample
        self.max_trial = max_trial
        self.min_scale = min_scale
        self.max_scale = max_scale
        self.min_aspect_ratio = min_aspect_ratio
        self.max_aspect_ratio = max_aspect_ratio
        self.min_jaccard_overlap = min_jaccard_overlap
        self.max_jaccard_overlap = max_jaccard_overlap
36 37
        self.min_object_coverage = min_object_coverage
        self.max_object_coverage = max_object_coverage
Q
qingqing01 已提交
38
        self.use_square = use_square
39 40 41 42 43 44 45 46 47 48


class bbox():
    def __init__(self, xmin, ymin, xmax, ymax):
        self.xmin = xmin
        self.ymin = ymin
        self.xmax = xmax
        self.ymax = ymax


49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def intersect_bbox(bbox1, bbox2):
    if bbox2.xmin > bbox1.xmax or bbox2.xmax < bbox1.xmin or \
        bbox2.ymin > bbox1.ymax or bbox2.ymax < bbox1.ymin:
        intersection_box = bbox(0.0, 0.0, 0.0, 0.0)
    else:
        intersection_box = bbox(
            max(bbox1.xmin, bbox2.xmin),
            max(bbox1.ymin, bbox2.ymin),
            min(bbox1.xmax, bbox2.xmax), min(bbox1.ymax, bbox2.ymax))
    return intersection_box


def bbox_coverage(bbox1, bbox2):
    inter_box = intersect_bbox(bbox1, bbox2)
    intersect_size = bbox_area(inter_box)

    if intersect_size > 0:
        bbox1_size = bbox_area(bbox1)
        return intersect_size / bbox1_size
    else:
        return 0.


72
def bbox_area(src_bbox):
73 74 75 76 77 78
    if src_bbox.xmax < src_bbox.xmin or src_bbox.ymax < src_bbox.ymin:
        return 0.
    else:
        width = src_bbox.xmax - src_bbox.xmin
        height = src_bbox.ymax - src_bbox.ymin
        return width * height
79 80


Q
qingqing01 已提交
81
def generate_sample(sampler, image_width, image_height):
B
Bai Yifan 已提交
82 83 84
    scale = np.random.uniform(sampler.min_scale, sampler.max_scale)
    aspect_ratio = np.random.uniform(sampler.min_aspect_ratio,
                                     sampler.max_aspect_ratio)
Q
qingqing01 已提交
85 86 87
    aspect_ratio = max(aspect_ratio, (scale**2.0))
    aspect_ratio = min(aspect_ratio, 1 / (scale**2.0))

88 89
    bbox_width = scale * (aspect_ratio**0.5)
    bbox_height = scale / (aspect_ratio**0.5)
Q
qingqing01 已提交
90 91 92 93 94 95 96 97

    # guarantee a squared image patch after cropping
    if sampler.use_square:
        if image_height < image_width:
            bbox_width = bbox_height * image_height / image_width
        else:
            bbox_height = bbox_width * image_width / image_height

98 99
    xmin_bound = 1 - bbox_width
    ymin_bound = 1 - bbox_height
B
Bai Yifan 已提交
100 101
    xmin = np.random.uniform(0, xmin_bound)
    ymin = np.random.uniform(0, ymin_bound)
102 103 104 105 106 107
    xmax = xmin + bbox_width
    ymax = ymin + bbox_height
    sampled_bbox = bbox(xmin, ymin, xmax, ymax)
    return sampled_bbox


Q
qingqing01 已提交
108 109 110 111 112 113 114
def data_anchor_sampling(sampler, bbox_labels, image_width, image_height,
                         scale_array, resize_width, resize_height):
    num_gt = len(bbox_labels)
    # np.random.randint range: [low, high)
    rand_idx = np.random.randint(0, num_gt) if num_gt != 0 else 0

    if num_gt != 0:
115 116 117 118
        norm_xmin = bbox_labels[rand_idx][1]
        norm_ymin = bbox_labels[rand_idx][2]
        norm_xmax = bbox_labels[rand_idx][3]
        norm_ymax = bbox_labels[rand_idx][4]
Q
qingqing01 已提交
119 120 121 122 123 124 125

        xmin = norm_xmin * image_width
        ymin = norm_ymin * image_height
        wid = image_width * (norm_xmax - norm_xmin)
        hei = image_height * (norm_ymax - norm_ymin)
        range_size = 0

126
        area = wid * hei
Q
qingqing01 已提交
127 128 129 130 131 132
        for scale_ind in range(0, len(scale_array) - 1):
            if area > scale_array[scale_ind] ** 2 and area < \
                    scale_array[scale_ind + 1] ** 2:
                range_size = scale_ind + 1
                break

133 134 135
        if area > scale_array[len(scale_array) - 2]**2:
            range_size = len(scale_array) - 2

Q
qingqing01 已提交
136 137
        scale_choose = 0.0
        if range_size == 0:
138
            rand_idx_size = 0
Q
qingqing01 已提交
139 140
        else:
            # np.random.randint range: [low, high)
Q
qingqing01 已提交
141 142
            rng_rand_size = np.random.randint(0, range_size + 1)
            rand_idx_size = rng_rand_size % (range_size + 1)
Q
qingqing01 已提交
143

144 145 146 147 148 149 150 151 152 153
        if rand_idx_size == range_size:
            min_resize_val = scale_array[rand_idx_size] / 2.0
            max_resize_val = min(2.0 * scale_array[rand_idx_size],
                                 2 * math.sqrt(wid * hei))
            scale_choose = random.uniform(min_resize_val, max_resize_val)
        else:
            min_resize_val = scale_array[rand_idx_size] / 2.0
            max_resize_val = 2.0 * scale_array[rand_idx_size]
            scale_choose = random.uniform(min_resize_val, max_resize_val)

Q
qingqing01 已提交
154 155 156 157 158 159
        sample_bbox_size = wid * resize_width / scale_choose

        w_off_orig = 0.0
        h_off_orig = 0.0
        if sample_bbox_size < max(image_height, image_width):
            if wid <= sample_bbox_size:
B
Bai Yifan 已提交
160 161
                w_off_orig = np.random.uniform(xmin + wid - sample_bbox_size,
                                               xmin)
Q
qingqing01 已提交
162
            else:
B
Bai Yifan 已提交
163 164
                w_off_orig = np.random.uniform(xmin,
                                               xmin + wid - sample_bbox_size)
Q
qingqing01 已提交
165 166

            if hei <= sample_bbox_size:
B
Bai Yifan 已提交
167 168
                h_off_orig = np.random.uniform(ymin + hei - sample_bbox_size,
                                               ymin)
Q
qingqing01 已提交
169
            else:
B
Bai Yifan 已提交
170 171
                h_off_orig = np.random.uniform(ymin,
                                               ymin + hei - sample_bbox_size)
Q
qingqing01 已提交
172 173

        else:
B
Bai Yifan 已提交
174 175
            w_off_orig = np.random.uniform(image_width - sample_bbox_size, 0.0)
            h_off_orig = np.random.uniform(image_height - sample_bbox_size, 0.0)
Q
qingqing01 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189

        w_off_orig = math.floor(w_off_orig)
        h_off_orig = math.floor(h_off_orig)

        # Figure out top left coordinates.
        w_off = 0.0
        h_off = 0.0
        w_off = float(w_off_orig / image_width)
        h_off = float(h_off_orig / image_height)

        sampled_bbox = bbox(w_off, h_off,
                            w_off + float(sample_bbox_size / image_width),
                            h_off + float(sample_bbox_size / image_height))
        return sampled_bbox
190 191
    else:
        return 0
Q
qingqing01 已提交
192 193


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
def jaccard_overlap(sample_bbox, object_bbox):
    if sample_bbox.xmin >= object_bbox.xmax or \
            sample_bbox.xmax <= object_bbox.xmin or \
            sample_bbox.ymin >= object_bbox.ymax or \
            sample_bbox.ymax <= object_bbox.ymin:
        return 0
    intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin)
    intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin)
    intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax)
    intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax)
    intersect_size = (intersect_xmax - intersect_xmin) * (
        intersect_ymax - intersect_ymin)
    sample_bbox_size = bbox_area(sample_bbox)
    object_bbox_size = bbox_area(object_bbox)
    overlap = intersect_size / (
        sample_bbox_size + object_bbox_size - intersect_size)
    return overlap


def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
214 215 216 217 218 219 220 221 222
    if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0:
        has_jaccard_overlap = False
    else:
        has_jaccard_overlap = True
    if sampler.min_object_coverage == 0 and sampler.max_object_coverage == 0:
        has_object_coverage = False
    else:
        has_object_coverage = True

223
    if not has_jaccard_overlap and not has_object_coverage:
224
        return True
225
    found = False
226
    for i in range(len(bbox_labels)):
227 228
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
        if has_jaccard_overlap:
            overlap = jaccard_overlap(sample_bbox, object_bbox)
            if sampler.min_jaccard_overlap != 0 and \
                    overlap < sampler.min_jaccard_overlap:
                continue
            if sampler.max_jaccard_overlap != 0 and \
                    overlap > sampler.max_jaccard_overlap:
                continue
            found = True
        if has_object_coverage:
            object_coverage = bbox_coverage(object_bbox, sample_bbox)
            if sampler.min_object_coverage != 0 and \
                    object_coverage < sampler.min_object_coverage:
                continue
            if sampler.max_object_coverage != 0 and \
                    object_coverage > sampler.max_object_coverage:
                continue
            found = True
        if found:
            return True
    return found
250 251


Q
qingqing01 已提交
252 253
def generate_batch_samples(batch_sampler, bbox_labels, image_width,
                           image_height):
254 255 256 257 258 259
    sampled_bbox = []
    for sampler in batch_sampler:
        found = 0
        for i in range(sampler.max_trial):
            if found >= sampler.max_sample:
                break
Q
qingqing01 已提交
260
            sample_bbox = generate_sample(sampler, image_width, image_height)
261 262 263
            if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                sampled_bbox.append(sample_bbox)
                found = found + 1
Q
qingqing01 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
    return sampled_bbox


def generate_batch_random_samples(batch_sampler, bbox_labels, image_width,
                                  image_height, scale_array, resize_width,
                                  resize_height):
    sampled_bbox = []
    for sampler in batch_sampler:
        found = 0
        for i in range(sampler.max_trial):
            if found >= sampler.max_sample:
                break
            sample_bbox = data_anchor_sampling(
                sampler, bbox_labels, image_width, image_height, scale_array,
                resize_width, resize_height)
279 280
            if sample_bbox == 0:
                break
Q
qingqing01 已提交
281 282 283
            if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels):
                sampled_bbox.append(sample_bbox)
                found = found + 1
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    return sampled_bbox


def clip_bbox(src_bbox):
    src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0)
    src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0)
    src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0)
    src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0)
    return src_bbox


def meet_emit_constraint(src_bbox, sample_bbox):
    center_x = (src_bbox.xmax + src_bbox.xmin) / 2
    center_y = (src_bbox.ymax + src_bbox.ymin) / 2
    if center_x >= sample_bbox.xmin and \
        center_x <= sample_bbox.xmax and \
        center_y >= sample_bbox.ymin and \
        center_y <= sample_bbox.ymax:
        return True
    return False


Q
qingqing01 已提交
306 307 308 309 310 311 312 313
def project_bbox(object_bbox, sample_bbox):
    if object_bbox.xmin >= sample_bbox.xmax or \
       object_bbox.xmax <= sample_bbox.xmin or \
       object_bbox.ymin >= sample_bbox.ymax or \
       object_bbox.ymax <= sample_bbox.ymin:
        return False
    else:
        proj_bbox = bbox(0, 0, 0, 0)
314 315 316 317 318 319 320 321
        sample_width = sample_bbox.xmax - sample_bbox.xmin
        sample_height = sample_bbox.ymax - sample_bbox.ymin
        proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width
        proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height
        proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width
        proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height
        proj_bbox = clip_bbox(proj_bbox)
        if bbox_area(proj_bbox) > 0:
Q
qingqing01 已提交
322 323 324 325 326 327 328 329 330
            return proj_bbox
        else:
            return False


def transform_labels(bbox_labels, sample_bbox):
    sample_labels = []
    for i in range(len(bbox_labels)):
        sample_label = []
331 332
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
Q
qingqing01 已提交
333 334 335 336
        if not meet_emit_constraint(object_bbox, sample_bbox):
            continue
        proj_bbox = project_bbox(object_bbox, sample_bbox)
        if proj_bbox:
337 338 339 340 341 342 343 344 345 346
            sample_label.append(bbox_labels[i][0])
            sample_label.append(float(proj_bbox.xmin))
            sample_label.append(float(proj_bbox.ymin))
            sample_label.append(float(proj_bbox.xmax))
            sample_label.append(float(proj_bbox.ymax))
            sample_label = sample_label + bbox_labels[i][5:]
            sample_labels.append(sample_label)
    return sample_labels


347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
def transform_labels_sampling(bbox_labels, sample_bbox, resize_val,
                              min_face_size):
    sample_labels = []
    for i in range(len(bbox_labels)):
        sample_label = []
        object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2],
                           bbox_labels[i][3], bbox_labels[i][4])
        if not meet_emit_constraint(object_bbox, sample_bbox):
            continue
        proj_bbox = project_bbox(object_bbox, sample_bbox)
        if proj_bbox:
            real_width = float((proj_bbox.xmax - proj_bbox.xmin) * resize_val)
            real_height = float((proj_bbox.ymax - proj_bbox.ymin) * resize_val)
            if real_width * real_height < float(min_face_size * min_face_size):
                continue
            else:
                sample_label.append(bbox_labels[i][0])
                sample_label.append(float(proj_bbox.xmin))
                sample_label.append(float(proj_bbox.ymin))
                sample_label.append(float(proj_bbox.xmax))
                sample_label.append(float(proj_bbox.ymax))
                sample_label = sample_label + bbox_labels[i][5:]
                sample_labels.append(sample_label)
    return sample_labels


def crop_image(img, bbox_labels, sample_bbox, image_width, image_height,
               resize_width, resize_height, min_face_size):
375 376 377 378 379
    sample_bbox = clip_bbox(sample_bbox)
    xmin = int(sample_bbox.xmin * image_width)
    xmax = int(sample_bbox.xmax * image_width)
    ymin = int(sample_bbox.ymin * image_height)
    ymax = int(sample_bbox.ymax * image_height)
Q
qingqing01 已提交
380

381
    sample_img = img[ymin:ymax, xmin:xmax]
382 383 384
    resize_val = resize_width
    sample_labels = transform_labels_sampling(bbox_labels, sample_bbox,
                                              resize_val, min_face_size)
385 386 387
    return sample_img, sample_labels


Q
qingqing01 已提交
388
def crop_image_sampling(img, bbox_labels, sample_bbox, image_width,
389 390
                        image_height, resize_width, resize_height,
                        min_face_size):
Q
qingqing01 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    # no clipping here
    xmin = int(sample_bbox.xmin * image_width)
    xmax = int(sample_bbox.xmax * image_width)
    ymin = int(sample_bbox.ymin * image_height)
    ymax = int(sample_bbox.ymax * image_height)

    w_off = xmin
    h_off = ymin
    width = xmax - xmin
    height = ymax - ymin

    cross_xmin = max(0.0, float(w_off))
    cross_ymin = max(0.0, float(h_off))
    cross_xmax = min(float(w_off + width - 1.0), float(image_width))
    cross_ymax = min(float(h_off + height - 1.0), float(image_height))
    cross_width = cross_xmax - cross_xmin
    cross_height = cross_ymax - cross_ymin

    roi_xmin = 0 if w_off >= 0 else abs(w_off)
    roi_ymin = 0 if h_off >= 0 else abs(h_off)
    roi_width = cross_width
    roi_height = cross_height

Q
qingqing01 已提交
414 415 416 417 418 419 420 421 422 423
    roi_y1 = int(roi_ymin)
    roi_y2 = int(roi_ymin + roi_height)
    roi_x1 = int(roi_xmin)
    roi_x2 = int(roi_xmin + roi_width)

    cross_y1 = int(cross_ymin)
    cross_y2 = int(cross_ymin + cross_height)
    cross_x1 = int(cross_xmin)
    cross_x2 = int(cross_xmin + cross_width)

424
    sample_img = np.zeros((height, width, 3))
Q
qingqing01 已提交
425 426
    sample_img[roi_y1 : roi_y2, roi_x1 : roi_x2] = \
        img[cross_y1 : cross_y2, cross_x1 : cross_x2]
Q
qingqing01 已提交
427 428 429 430

    sample_img = cv2.resize(
        sample_img, (resize_width, resize_height), interpolation=cv2.INTER_AREA)

431 432 433
    resize_val = resize_width
    sample_labels = transform_labels_sampling(bbox_labels, sample_bbox,
                                              resize_val, min_face_size)
Q
qingqing01 已提交
434 435 436
    return sample_img, sample_labels


437
def random_brightness(img, settings):
B
Bai Yifan 已提交
438
    prob = np.random.uniform(0, 1)
Q
qingqing01 已提交
439
    if prob < settings.brightness_prob:
B
Bai Yifan 已提交
440 441
        delta = np.random.uniform(-settings.brightness_delta,
                                  settings.brightness_delta) + 1
442 443 444 445 446
        img = ImageEnhance.Brightness(img).enhance(delta)
    return img


def random_contrast(img, settings):
B
Bai Yifan 已提交
447
    prob = np.random.uniform(0, 1)
Q
qingqing01 已提交
448
    if prob < settings.contrast_prob:
B
Bai Yifan 已提交
449 450
        delta = np.random.uniform(-settings.contrast_delta,
                                  settings.contrast_delta) + 1
451 452 453 454 455
        img = ImageEnhance.Contrast(img).enhance(delta)
    return img


def random_saturation(img, settings):
B
Bai Yifan 已提交
456
    prob = np.random.uniform(0, 1)
Q
qingqing01 已提交
457
    if prob < settings.saturation_prob:
B
Bai Yifan 已提交
458 459
        delta = np.random.uniform(-settings.saturation_delta,
                                  settings.saturation_delta) + 1
460 461 462 463 464
        img = ImageEnhance.Color(img).enhance(delta)
    return img


def random_hue(img, settings):
B
Bai Yifan 已提交
465
    prob = np.random.uniform(0, 1)
Q
qingqing01 已提交
466
    if prob < settings.hue_prob:
B
Bai Yifan 已提交
467
        delta = np.random.uniform(-settings.hue_delta, settings.hue_delta)
468 469 470 471 472 473 474
        img_hsv = np.array(img.convert('HSV'))
        img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta
        img = Image.fromarray(img_hsv, mode='HSV').convert('RGB')
    return img


def distort_image(img, settings):
B
Bai Yifan 已提交
475
    prob = np.random.uniform(0, 1)
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    # Apply different distort order
    if prob > 0.5:
        img = random_brightness(img, settings)
        img = random_contrast(img, settings)
        img = random_saturation(img, settings)
        img = random_hue(img, settings)
    else:
        img = random_brightness(img, settings)
        img = random_saturation(img, settings)
        img = random_hue(img, settings)
        img = random_contrast(img, settings)
    return img


def expand_image(img, bbox_labels, img_width, img_height, settings):
B
Bai Yifan 已提交
491
    prob = np.random.uniform(0, 1)
Q
qingqing01 已提交
492 493
    if prob < settings.expand_prob:
        if settings.expand_max_ratio - 1 >= 0.01:
B
Bai Yifan 已提交
494
            expand_ratio = np.random.uniform(1, settings.expand_max_ratio)
495 496
            height = int(img_height * expand_ratio)
            width = int(img_width * expand_ratio)
B
Bai Yifan 已提交
497 498
            h_off = math.floor(np.random.uniform(0, height - img_height))
            w_off = math.floor(np.random.uniform(0, width - img_width))
499 500 501 502
            expand_bbox = bbox(-w_off / img_width, -h_off / img_height,
                               (width - w_off) / img_width,
                               (height - h_off) / img_height)
            expand_img = np.ones((height, width, 3))
Q
qingqing01 已提交
503
            expand_img = np.uint8(expand_img * np.squeeze(settings.img_mean))
504 505 506 507 508
            expand_img = Image.fromarray(expand_img)
            expand_img.paste(img, (int(w_off), int(h_off)))
            bbox_labels = transform_labels(bbox_labels, expand_bbox)
            return expand_img, bbox_labels, width, height
    return img, bbox_labels, img_width, img_height