ranknet.py 4.4 KB
Newer Older
D
dong zhihong 已提交
1 2
import os, sys
import gzip
3
import functools
D
dong zhihong 已提交
4 5
import paddle.v2 as paddle
import numpy as np
6
from metrics import ndcg
D
dong zhihong 已提交
7 8 9 10

# ranknet is the classic pairwise learning to rank algorithm
# http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf

11

D
dong zhihong 已提交
12
def half_ranknet(name_prefix, input_dim):
13 14 15 16 17 18 19 20 21
    """
  parameter in same name will be shared in paddle framework,
  these parameters in ranknet can be used in shared state, e.g. left network and right network
  shared parameters in detail
  https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/api.md
  """
    # data layer
    data = paddle.layer.data(name_prefix + "/data",
                             paddle.data_type.dense_vector(input_dim))
D
dong zhihong 已提交
22

23 24 25 26 27 28 29 30 31 32 33 34 35
    # hidden layer
    hd1 = paddle.layer.fc(
        input=data,
        size=10,
        act=paddle.activation.Tanh(),
        param_attr=paddle.attr.Param(initial_std=0.01, name="hidden_w1"))
    # fully connect layer/ output layer
    output = paddle.layer.fc(
        input=hd1,
        size=1,
        act=paddle.activation.Linear(),
        param_attr=paddle.attr.Param(initial_std=0.01, name="output"))
    return output
D
dong zhihong 已提交
36 37 38


def ranknet(input_dim):
39 40 41 42 43 44 45 46 47 48 49 50
    # label layer
    label = paddle.layer.data("label", paddle.data_type.integer_value(1))

    # reuse the parameter in half_ranknet
    output_left = half_ranknet("left", input_dim)
    output_right = half_ranknet("right", input_dim)

    evaluator = paddle.evaluator.auc(input=output_left, label=label)
    # rankcost layer
    cost = paddle.layer.rank_cost(
        name="cost", left=output_left, right=output_right, label=label)
    return cost
D
dong zhihong 已提交
51 52 53


def train_ranknet(num_passes):
54 55 56
    train_reader = paddle.batch(
        paddle.reader.shuffle(paddle.dataset.mq2007.train, buf_size=100),
        batch_size=100)
D
dong zhihong 已提交
57
    test_reader = paddle.batch(paddle.dataset.mq2007.test, batch_size=100)
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

    # mq2007 feature_dim = 46, dense format 
    # fc hidden_dim = 128
    feature_dim = 46
    cost = ranknet(feature_dim)
    parameters = paddle.parameters.create(cost)

    trainer = paddle.trainer.SGD(
        cost=cost,
        parameters=parameters,
        update_equation=paddle.optimizer.Adam(learning_rate=2e-4))

    # Define the input data order
    feeding = {"label": 0, "left/data": 1, "right/data": 2}

    #  Define end batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d Batch %d Cost %.9f" % (
                    event.pass_id, event.batch_id, event.cost)
            else:
                sys.stdout.write(".")
                sys.stdout.flush()
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(reader=test_reader, feeding=feeding)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
            with gzip.open("ranknet_params_%d.tar.gz" % (event.pass_id),
                           "w") as f:
                parameters.to_tar(f)

    trainer.train(
        reader=train_reader,
        event_handler=event_handler,
        feeding=feeding,
        num_passes=num_passes)

D
dong zhihong 已提交
95 96

def ranknet_infer(pass_id):
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    """
  load the trained model. And predict with plain txt input
  """
    print "Begin to Infer..."
    feature_dim = 46

    # we just need half_ranknet to predict a rank score, which can be used in sort documents
    output = half_ranknet("left", feature_dim)
    parameters = paddle.parameters.Parameters.from_tar(
        gzip.open("ranknet_params_%d.tar.gz" % (pass_id - 1)))

    # load data of same query and relevance documents, need ranknet to rank these candidates
    infer_query_id = None
    infer_data = []
    infer_score_list = []
    infer_data_num = 1000

    # convert to mq2007 built-in data format
    # <query_id> <relevance_score> <feature_vector>
    plain_txt_test = functools.partial(
        paddle.dataset.mq2007.test, format="plain_txt")

    for query_id, relevance_score, feature_vector in plain_txt_test():
        if infer_query_id == None:
            infer_query_id = query_id
        elif infer_query_id != query_id:
            break
        infer_data.append(feature_vector)
    predicitons = paddle.infer(
        output_layer=output, parameters=parameters, input=infer_data)

D
dong zhihong 已提交
128 129

if __name__ == '__main__':
130 131 132 133
    paddle.init(use_gpu=False, trainer_count=4)
    pass_num = 10
    train_ranknet(pass_num)
    ranknet_infer(pass_id=pass_num - 1)