reader.py 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import glob
16
import six
Y
Yu Yang 已提交
17 18
import os
import tarfile
19

20
import numpy as np
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
import paddle.fluid as fluid


def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
                   is_label=False,
                   return_attn_bias=True,
                   return_max_len=True,
                   return_num_token=False):
    """
    Pad the instances to the max sequence length in batch, and generate the
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if is_label:  # label weight
        inst_weight = np.array([[1.] * len(inst) + [0.] * (max_len - len(inst))
                                for inst in insts])
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
        inst_pos = np.array([
            list(range(0, len(inst))) + [0] * (max_len - len(inst))
            for inst in insts
        ])
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
            slf_attn_bias_data = np.triu(slf_attn_bias_data,
                                         1).reshape([-1, 1, max_len, max_len])
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    if return_num_token:
        num_token = 0
        for inst in insts:
            num_token += len(inst)
        return_list += [num_token]
    return return_list if len(return_list) > 1 else return_list[0]


def prepare_train_input(insts, src_pad_idx, trg_pad_idx, n_head):
    """
    Put all padded data needed by training into a list.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
G
Guo Sheng 已提交
87 88
    src_word = src_word.reshape(-1, src_max_len)
    src_pos = src_pos.reshape(-1, src_max_len)
89 90
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
G
Guo Sheng 已提交
91
    trg_word = trg_word.reshape(-1, trg_max_len)
G
guosheng 已提交
92
    trg_word = trg_word[:, 1:]  # pad by fluid.layers.pad
G
Guo Sheng 已提交
93
    trg_pos = trg_pos.reshape(-1, trg_max_len)
94 95 96 97 98 99 100 101 102 103 104 105 106

    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")

    lbl_word, lbl_weight, num_token = pad_batch_data(
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
        return_max_len=False,
        return_num_token=True)
G
Guo Sheng 已提交
107 108
    lbl_word = lbl_word.reshape(-1, 1)
    lbl_weight = lbl_weight.reshape(-1, 1)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    data_inputs = [
        src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
        trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
    ]

    return data_inputs


def prepare_infer_input(insts, src_pad_idx, bos_idx, n_head, place):
    """
    Put all padded data needed by beam search decoder into a list.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    # start tokens
    trg_word = np.asarray([[bos_idx]] * len(insts), dtype="int64")
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, 1, 1]).astype("float32")
G
Guo Sheng 已提交
128 129 130
    trg_word = trg_word.reshape(-1, 1)
    src_word = src_word.reshape(-1, src_max_len)
    src_pos = src_pos.reshape(-1, src_max_len)
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    def to_lodtensor(data, place, lod=None):
        data_tensor = fluid.LoDTensor()
        data_tensor.set(data, place)
        if lod is not None:
            data_tensor.set_lod(lod)
        return data_tensor

    # beamsearch_op must use tensors with lod
    init_score = to_lodtensor(
        np.zeros_like(
            trg_word, dtype="float32").reshape(-1, 1),
        place, [range(trg_word.shape[0] + 1)] * 2)
    trg_word = to_lodtensor(trg_word, place, [range(trg_word.shape[0] + 1)] * 2)
    init_idx = np.asarray(range(len(insts)), dtype="int32")

    data_inputs = [
        src_word, src_pos, src_slf_attn_bias, trg_word, init_score, init_idx,
        trg_src_attn_bias
    ]
    return data_inputs
152

153 154 155 156 157 158 159

class SortType(object):
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"


Y
Yu Yang 已提交
160
class Converter(object):
161
    def __init__(self, vocab, beg, end, unk, delimiter, add_beg):
Y
Yu Yang 已提交
162 163 164 165
        self._vocab = vocab
        self._beg = beg
        self._end = end
        self._unk = unk
166
        self._delimiter = delimiter
167
        self._add_beg = add_beg
168

Y
Yu Yang 已提交
169
    def __call__(self, sentence):
170
        return ([self._beg] if self._add_beg else []) + [
171 172
            self._vocab.get(w, self._unk)
            for w in sentence.split(self._delimiter)
Y
Yu Yang 已提交
173
        ] + [self._end]
174

Y
Yu Yang 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234

class ComposedConverter(object):
    def __init__(self, converters):
        self._converters = converters

    def __call__(self, parallel_sentence):
        return [
            self._converters[i](parallel_sentence[i])
            for i in range(len(self._converters))
        ]


class SentenceBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


class TokenBatchCreator(object):
    def __init__(self, batch_size):
        self.batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self.batch) + 1) > self._batch_size:
            result = self.batch
            self.batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self.batch.append(info)


class SampleInfo(object):
    def __init__(self, i, max_len, min_len):
        self.i = i
        self.min_len = min_len
        self.max_len = max_len


class MinMaxFilter(object):
    def __init__(self, max_len, min_len, underlying_creator):
        self._min_len = min_len
        self._max_len = max_len
        self._creator = underlying_creator

    def append(self, info):
        if info.max_len > self._max_len or info.min_len < self._min_len:
            return
235
        else:
Y
Yu Yang 已提交
236 237 238 239 240
            return self._creator.append(info)

    @property
    def batch(self):
        return self._creator.batch
241 242


243
class DataProcessor(object):
244 245
    """
    The data reader loads all data from files and produces batches of data
246
    in the way corresponding to settings.
247 248 249 250 251

    An example of returning a generator producing data batches whose data
    is shuffled in each pass and sorted in each pool:

    ```
252
    train_data = DataProcessor(
253 254 255 256 257
        src_vocab_fpath='data/src_vocab_file',
        trg_vocab_fpath='data/trg_vocab_file',
        fpattern='data/part-*',
        use_token_batch=True,
        batch_size=2000,
258 259
        device_count=8,
        n_head=8,
260 261 262 263 264 265 266
        pool_size=10000,
        sort_type=SortType.POOL,
        shuffle=True,
        shuffle_batch=True,
        start_mark='<s>',
        end_mark='<e>',
        unk_mark='<unk>',
267
        clip_last_batch=False).data_generator(phase='train')
268
    ```
269 270 271 272 273 274 275 276 277 278 279 280

    :param src_vocab_fpath: The path of vocabulary file of source language.
    :type src_vocab_fpath: basestring
    :param trg_vocab_fpath: The path of vocabulary file of target language.
    :type trg_vocab_fpath: basestring
    :param fpattern: The pattern to match data files.
    :type fpattern: basestring
    :param batch_size: The number of sequences contained in a mini-batch.
        or the maximum number of tokens (include paddings) contained in a
        mini-batch.
    :type batch_size: int
    :param pool_size: The size of pool buffer.
281 282 283 284 285 286
    :type device_count: int
    :param device_count: The number of devices. The actual batch size is
        determined by both batch_size and device_count.
    :type n_head: int
    :param n_head: The number of head used in multi-head attention. Actually,
        this is not a reader related argument, but is used for input data.
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    :type pool_size: int
    :param sort_type: The grain to sort by length: 'global' for all
        instances; 'pool' for instances in pool; 'none' for no sort.
    :type sort_type: basestring
    :param clip_last_batch: Whether to clip the last uncompleted batch.
    :type clip_last_batch: bool
    :param tar_fname: The data file in tar if fpattern matches a tar file.
    :type tar_fname: basestring
    :param min_length: The minimum length used to filt sequences.
    :type min_length: int
    :param max_length: The maximum length used to filt sequences.
    :type max_length: int
    :param shuffle: Whether to shuffle all instances.
    :type shuffle: bool
    :param shuffle_batch: Whether to shuffle the generated batches.
    :type shuffle_batch: bool
    :param use_token_batch: Whether to produce batch data according to
        token number.
    :type use_token_batch: bool
306 307 308 309 310 311
    :param field_delimiter: The delimiter used to split source and target in
        each line of data file.
    :type field_delimiter: basestring
    :param token_delimiter: The delimiter used to split tokens in source or
        target sentences.
    :type token_delimiter: basestring
312 313 314 315 316 317 318 319
    :param start_mark: The token representing for the beginning of
        sentences in dictionary.
    :type start_mark: basestring
    :param end_mark: The token representing for the end of sentences
        in dictionary.
    :type end_mark: basestring
    :param unk_mark: The token representing for unknown word in dictionary.
    :type unk_mark: basestring
320 321 322
    :param only_src: Whether each line is a source and target sentence
        pair or only has the source sentence.
    :type only_src: bool
323 324
    :param seed: The seed for random.
    :type seed: int
325 326 327 328 329 330 331
    """

    def __init__(self,
                 src_vocab_fpath,
                 trg_vocab_fpath,
                 fpattern,
                 batch_size,
332 333
                 device_count,
                 n_head,
334
                 pool_size,
Y
Yu Yang 已提交
335
                 sort_type=SortType.GLOBAL,
336
                 clip_last_batch=False,
337 338 339 340 341 342
                 tar_fname=None,
                 min_length=0,
                 max_length=100,
                 shuffle=True,
                 shuffle_batch=False,
                 use_token_batch=False,
343 344
                 field_delimiter="\t",
                 token_delimiter=" ",
345 346 347
                 start_mark="<s>",
                 end_mark="<e>",
                 unk_mark="<unk>",
348
                 only_src=False,
349
                 seed=0):
350 351 352 353 354 355
        # convert str to bytes, and use byte data
        field_delimiter = field_delimiter.encode("utf8")
        token_delimiter = token_delimiter.encode("utf8")
        start_mark = start_mark.encode("utf8")
        end_mark = end_mark.encode("utf8")
        unk_mark = unk_mark.encode("utf8")
356
        self._src_vocab = self.load_dict(src_vocab_fpath)
357 358 359 360 361
        self._trg_vocab = self.load_dict(trg_vocab_fpath)
        self._bos_idx = self._src_vocab[start_mark]
        self._eos_idx = self._src_vocab[end_mark]
        self._unk_idx = self._src_vocab[unk_mark]
        self._only_src = only_src
362 363
        self._pool_size = pool_size
        self._batch_size = batch_size
364 365
        self._device_count = device_count
        self._n_head = n_head
366 367 368 369 370 371 372
        self._use_token_batch = use_token_batch
        self._sort_type = sort_type
        self._clip_last_batch = clip_last_batch
        self._shuffle = shuffle
        self._shuffle_batch = shuffle_batch
        self._min_length = min_length
        self._max_length = max_length
373 374
        self._field_delimiter = field_delimiter
        self._token_delimiter = token_delimiter
375
        self.load_src_trg_ids(fpattern, tar_fname)
376 377
        self._random = np.random
        self._random.seed(seed)
Y
Yu Yang 已提交
378

379
    def load_src_trg_ids(self, fpattern, tar_fname):
Y
Yu Yang 已提交
380 381 382
        converters = [
            Converter(
                vocab=self._src_vocab,
383 384 385
                beg=self._bos_idx,
                end=self._eos_idx,
                unk=self._unk_idx,
386 387
                delimiter=self._token_delimiter,
                add_beg=False)
Y
Yu Yang 已提交
388
        ]
389
        if not self._only_src:
Y
Yu Yang 已提交
390 391 392
            converters.append(
                Converter(
                    vocab=self._trg_vocab,
393 394 395
                    beg=self._bos_idx,
                    end=self._eos_idx,
                    unk=self._unk_idx,
396 397
                    delimiter=self._token_delimiter,
                    add_beg=True))
Y
Yu Yang 已提交
398 399 400 401 402 403 404 405 406 407 408

        converters = ComposedConverter(converters)

        self._src_seq_ids = []
        self._trg_seq_ids = None if self._only_src else []
        self._sample_infos = []

        for i, line in enumerate(self._load_lines(fpattern, tar_fname)):
            src_trg_ids = converters(line)
            self._src_seq_ids.append(src_trg_ids[0])
            lens = [len(src_trg_ids[0])]
409
            if not self._only_src:
Y
Yu Yang 已提交
410 411 412
                self._trg_seq_ids.append(src_trg_ids[1])
                lens.append(len(src_trg_ids[1]))
            self._sample_infos.append(SampleInfo(i, max(lens), min(lens)))
413

Y
Yu Yang 已提交
414
    def _load_lines(self, fpattern, tar_fname):
415
        fpaths = glob.glob(fpattern)
416
        assert len(fpaths) > 0, "no matching file to the provided data path"
417 418 419 420 421

        if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]):
            if tar_fname is None:
                raise Exception("If tar file provided, please set tar_fname.")

422
            f = tarfile.open(fpaths[0], "rb")
Y
Yu Yang 已提交
423
            for line in f.extractfile(tar_fname):
424
                fields = line.strip(b"\n").split(self._field_delimiter)
425 426 427
                if (not self._only_src and len(fields) == 2) or (
                        self._only_src and len(fields) == 1):
                    yield fields
428 429 430 431 432
        else:
            for fpath in fpaths:
                if not os.path.isfile(fpath):
                    raise IOError("Invalid file: %s" % fpath)

433
                with open(fpath, "rb") as f:
Y
Yu Yang 已提交
434
                    for line in f:
435
                        fields = line.strip(b"\n").split(self._field_delimiter)
436 437 438
                        if (not self._only_src and len(fields) == 2) or (
                                self._only_src and len(fields) == 1):
                            yield fields
439

440 441
    @staticmethod
    def load_dict(dict_path, reverse=False):
442
        word_dict = {}
443
        with open(dict_path, "rb") as fdict:
444 445
            for idx, line in enumerate(fdict):
                if reverse:
446
                    word_dict[idx] = line.strip(b"\n")
447
                else:
448
                    word_dict[line.strip(b"\n")] = idx
449 450
        return word_dict

451 452 453 454 455
    def batch_generator(self, batch_size, use_token_batch):
        def __impl__():
            # global sort or global shuffle
            if self._sort_type == SortType.GLOBAL:
                infos = sorted(self._sample_infos, key=lambda x: x.max_len)
Y
Yu Yang 已提交
456
            else:
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
                if self._shuffle:
                    infos = self._sample_infos
                    self._random.shuffle(infos)
                else:
                    infos = self._sample_infos

                if self._sort_type == SortType.POOL:
                    reverse = True
                    for i in range(0, len(infos), self._pool_size):
                        # to avoid placing short next to long sentences
                        reverse = not reverse
                        infos[i:i + self._pool_size] = sorted(
                            infos[i:i + self._pool_size],
                            key=lambda x: x.max_len,
                            reverse=reverse)

            # concat batch
            batches = []
            batch_creator = TokenBatchCreator(
                batch_size) if use_token_batch else SentenceBatchCreator(
                    batch_size)
            batch_creator = MinMaxFilter(self._max_length, self._min_length,
                                         batch_creator)

            for info in infos:
                batch = batch_creator.append(info)
                if batch is not None:
                    batches.append(batch)

            if not self._clip_last_batch and len(batch_creator.batch) != 0:
                batches.append(batch_creator.batch)

            if self._shuffle_batch:
                self._random.shuffle(batches)

            for batch in batches:
                batch_ids = [info.i for info in batch]

                if self._only_src:
                    yield [[self._src_seq_ids[idx]] for idx in batch_ids]
                else:
                    yield [(self._src_seq_ids[idx], self._trg_seq_ids[idx][:-1],
                            self._trg_seq_ids[idx][1:]) for idx in batch_ids]

        return __impl__

    @staticmethod
    def stack(data_reader, count, clip_last=True):
        def __impl__():
            res = []
            for item in data_reader():
                res.append(item)
                if len(res) == count:
                    yield res
                    res = []
            if len(res) == count:
                yield res
            elif not clip_last:
                data = []
                for item in res:
                    data += item
                if len(data) > count:
                    inst_num_per_part = len(data) // count
                    yield [
                        data[inst_num_per_part * i:inst_num_per_part * (i + 1)]
                        for i in range(count)
                    ]

        return __impl__

    @staticmethod
    def split(data_reader, count):
        def __impl__():
            for item in data_reader():
                inst_num_per_part = len(item) // count
                for i in range(count):
                    yield item[inst_num_per_part * i:inst_num_per_part * (i + 1
                                                                          )]

        return __impl__

    def data_generator(self, phase, place=None):
        # Any token included in dict can be used to pad, since the paddings' loss
        # will be masked out by weights and make no effect on parameter gradients.
        src_pad_idx = trg_pad_idx = self._eos_idx
        bos_idx = self._bos_idx
        n_head = self._n_head
        data_reader = self.batch_generator(
            self._batch_size *
            (1 if self._use_token_batch else self._device_count),
            self._use_token_batch)
        if not self._use_token_batch:
            # to make data on each device have similar token number
            data_reader = self.split(data_reader, self._device_count)

        def __for_train__():
            for data in data_reader():
                data_inputs = prepare_train_input(data, src_pad_idx,
                                                  trg_pad_idx, n_head)
                yield data_inputs

        def __for_predict__():
            for data in data_reader():
                data_inputs = prepare_infer_input(data, src_pad_idx, bos_idx,
                                                  n_head, place)
                yield data_inputs

        return __for_train__ if phase == "train" else __for_predict__

    def get_vocab_summary(self):
        return len(self._src_vocab), len(
            self._trg_vocab), self._bos_idx, self._eos_idx, self._unk_idx