train.py 3.6 KB
Newer Older
S
Superjom 已提交
1
import argparse
S
Superjom 已提交
2
import gzip
S
Superjom 已提交
3

S
Superjom 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
import reader
import paddle.v2 as paddle
from utils import logger, ModelType
from network_conf import CTRmodel


def parse_args():
    parser = argparse.ArgumentParser(description="PaddlePaddle CTR example")
    parser.add_argument(
        '--train_data_path',
        type=str,
        required=True,
        help="path of training dataset")
    parser.add_argument(
        '--test_data_path', type=str, help='path of testing dataset')
    parser.add_argument(
        '--batch_size',
        type=int,
        default=10000,
        help="size of mini-batch (default:10000)")
    parser.add_argument(
        '--num_passes', type=int, default=10, help="number of passes to train")
    parser.add_argument(
        '--model_output_prefix',
        type=str,
        default='./ctr_models',
        help='prefix of path for model to store (default: ./ctr_models)')
    parser.add_argument(
        '--data_meta_file',
        type=str,
        required=True,
        help='path of data meta info file', )
    parser.add_argument(
        '--model_type',
        type=int,
        required=True,
        default=ModelType.CLASSIFICATION,
        help='model type, classification: %d, regression %d (default classification)'
        % (ModelType.CLASSIFICATION, ModelType.REGRESSION))

    return parser.parse_args()
S
Superjom 已提交
45

S
Superjom 已提交
46

S
Superjom 已提交
47
dnn_layer_dims = [128, 64, 32, 1]
S
Superjom 已提交
48 49 50 51 52 53

# ==============================================================================
#                   cost and train period
# ==============================================================================


S
Superjom 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
def train():
    args = parse_args()
    args.model_type = ModelType(args.model_type)
    paddle.init(use_gpu=False, trainer_count=1)
    dnn_input_dim, lr_input_dim = reader.load_data_meta(args.data_meta_file)

    # create ctr model.
    model = CTRmodel(
        dnn_layer_dims,
        dnn_input_dim,
        lr_input_dim,
        model_type=args.model_type,
        is_infer=False)

    params = paddle.parameters.create(model.train_cost)
    optimizer = paddle.optimizer.AdaGrad()

    trainer = paddle.trainer.SGD(
        cost=model.train_cost, parameters=params, update_equation=optimizer)

    dataset = reader.Dataset()

    def __event_handler__(event):
        if isinstance(event, paddle.event.EndIteration):
            num_samples = event.batch_id * args.batch_size
            if event.batch_id % 100 == 0:
                logger.warning("Pass %d, Samples %d, Cost %f, %s" % (
                    event.pass_id, num_samples, event.cost, event.metrics))

            if event.batch_id % 1000 == 0:
                if args.test_data_path:
                    result = trainer.test(
                        reader=paddle.batch(
                            dataset.test(args.test_data_path),
                            batch_size=args.batch_size),
                        feeding=reader.feeding_index)
                    logger.warning("Test %d-%d, Cost %f, %s" %
                                   (event.pass_id, event.batch_id, result.cost,
                                    result.metrics))

                path = "{}-pass-{}-batch-{}-test-{}.tar.gz".format(
                    args.model_output_prefix, event.pass_id, event.batch_id,
                    result.cost)
                with gzip.open(path, 'w') as f:
                    params.to_tar(f)

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                dataset.train(args.train_data_path), buf_size=500),
            batch_size=args.batch_size),
        feeding=reader.feeding_index,
        event_handler=__event_handler__,
        num_passes=args.num_passes)


if __name__ == '__main__':
    train()