index.html 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
  <script type="text/javascript" src="../.tools/theme/marked.js">
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>


<body>

<div id="context" class="container-fluid markdown-body">
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# 文本分类
文本分类是机器学习中的一项常见任务,主要目的是根据一条文本的内容,判断该文本所属的类别。在本例子中,我们利用有标注的语料库训练二分类DNN和CNN模型,完成对输入文本的分类任务。

DNN与CNN模型之间最大的区别在于:

- DNN不属于序列模型,大多使用基本的全连接结构,只能接受固定维度的特征向量作为输入。

- CNN属于序列模型,能够提取一个局部区域之内的特征,能够处理变长的序列输入。

举例来说,情感分类是一项常见的文本分类任务,在情感分类中,我们希望训练一个模型来判断句子中表现出的情感是正向还是负向。例如,"The apple is not bad",其中的"not bad"是决定这个句子情感的关键。

- 对于DNN模型来说,只能知道句子中有一个"not"和一个"bad",但两者之间的顺序关系在输入时已经丢失,网络不再有机会学习序列之间的顺序信息。

- CNN模型接受文本序列作为输入,保留了"not bad"之间的顺序信息。因此,在大多数文本分类任务上,CNN模型的表现要好于DNN。

## 实验数据
本例子的实验在[IMDB数据集](http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz)上进行。IMDB数据集包含了来自IMDB(互联网电影数据库)网站的5万条电影影评,并被标注为正面/负面两种评价。数据集被划分为train和test两部分,各2.5万条数据,正负样本的比例基本为1:1。样本直接以英文原文的形式表示。

## DNN模型

**DNN的模型结构入下图所示:**

<p align="center">
<img src="images/dnn_net.png" width = "90%" align="center"/><br/>
图1. DNN文本分类模型
</p>

**可以看到,模型主要分为如下几个部分:**

- **词向量层**:IMDB的样本由原始的英文单词组成,为了更好地表示不同词之间语义上的关系,首先将英文单词转化为固定维度的向量。训练完成后,词与词语义上的相似程度可以用它们的词向量之间的距离来表示,语义上越相似,距离越近。关于词向量的更多信息请参考PaddleBook中的[词向量](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)一节。

- **最大池化层**:最大池化在时间序列上进行,池化过程消除了不同语料样本在单词数量多少上的差异,并提炼出词向量中每一下标位置上的最大值。经过池化后,词向量层输出的向量序列被转化为一条固定维度的向量。例如,假设最大池化前向量的序列为`[[2,3,5],[7,3,6],[1,4,0]]`,则最大池化的结果为:`[7,4,6]`。

- **全连接隐层**:经过最大池化后的向量被送入两个连续的隐层,隐层之间为全连接结构。


- **输出层**:输出层的神经元数量和样本的类别数一致,例如在二分类问题中,输出层会有2个神经元。通过Softmax激活函数,输出结果是一个归一化的概率分布,和为1,因此第$i$个神经元的输出就可以认为是样本属于第$i$类的预测概率。

**通过PaddlePaddle实现该DNN结构的代码如下:**

```python
import paddle.v2 as paddle

def fc_net(dict_dim, class_dim=2, emb_dim=28):
    """
    dnn network definition

    :param dict_dim: size of word dictionary
    :type input_dim: int
    :params class_dim: number of instance class
    :type class_dim: int
    :params emb_dim: embedding vector dimension
    :type emb_dim: int
    """

    # input layers
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(dict_dim))
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))

    # embedding layer
    emb = paddle.layer.embedding(input=data, size=emb_dim)
    # max pooling
    seq_pool = paddle.layer.pooling(
        input=emb, pooling_type=paddle.pooling.Max())

    # two hidden layers
    hd_layer_size = [28, 8]
    hd_layer_init_std = [1.0 / math.sqrt(s) for s in hd_layer_size]
    hd1 = paddle.layer.fc(
        input=seq_pool,
        size=hd_layer_size[0],
        act=paddle.activation.Tanh(),
        param_attr=paddle.attr.Param(initial_std=hd_layer_init_std[0]))
    hd2 = paddle.layer.fc(
        input=hd1,
        size=hd_layer_size[1],
        act=paddle.activation.Tanh(),
        param_attr=paddle.attr.Param(initial_std=hd_layer_init_std[1]))

    # output layer
    output = paddle.layer.fc(
        input=hd2,
        size=class_dim,
        act=paddle.activation.Softmax(),
        param_attr=paddle.attr.Param(initial_std=1.0 / math.sqrt(class_dim)))

    cost = paddle.layer.classification_cost(input=output, label=lbl)

    return cost, output, lbl

```
该DNN模型默认对输入的语料进行二分类(`class_dim=2`),embedding的词向量维度默认为28(`emd_dim=28`),两个隐层均使用Tanh激活函数(`act=paddle.activation.Tanh()`)。

需要注意的是,该模型的输入数据为整数序列,而不是原始的英文单词序列。事实上,为了处理方便我们一般会事先将单词根据词频顺序进行id化,即将单词用整数替代, 也就是单词在字典中的序号。这一步一般在DNN模型之外完成。

## CNN模型

**CNN的模型结构如下图所示:**

<p align="center">
<img src="images/cnn_net.png" width = "90%" align="center"/><br/>
图2. CNN文本分类模型
</p>

**可以看到,模型主要分为如下几个部分:**

- **词向量层**:与DNN中词向量层的作用一样,将英文单词转化为固定维度的向量,利用向量之间的距离来表示词之间的语义相关程度。如图2中所示,将得到的词向量定义为行向量,再将语料中所有的单词产生的行向量拼接在一起组成矩阵。假设词向量维度为5,语料“The cat sat on the read mat”包含7个单词,那么得到的矩阵维度为7*5。关于词向量的更多信息请参考PaddleBook中的[词向量](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)一节。

- **卷积层**: 文本分类中的卷积在时间序列上进行,即卷积核的宽度和词向量层产出的矩阵一致,卷积沿着矩阵的高度方向进行。卷积后得到的结果被称为“特征图”(feature map)。假设卷积核的高度为$h$,矩阵的高度为$N$,卷积的步长为1,则得到的特征图为一个高度为$N+1-h$的向量。可以同时使用多个不同高度的卷积核,得到多个特征图。

- **最大池化层**: 对卷积得到的各个特征图分别进行最大池化操作。由于特征图本身已经是向量,因此这里的最大池化实际上就是简单地选出各个向量中的最大元素。各个最大元素又被拼接在一起,组成新的向量,显然,该向量的维度等于特征图的数量,也就是卷积核的数量。举例来说,假设我们使用了四个不同的卷积核,卷积产生的特征图分别为:`[2,3,5]`、`[8,2,1]`、`[5,7,7,6]`和`[4,5,1,8]`,由于卷积核的高度不同,因此产生的特征图尺寸也有所差异。分别在这四个特征图上进行最大池化,结果为:`[5]`、`[8]`、`[7]`和`[8]`,最后将池化结果拼接在一起,得到`[5,8,7,8]`。

- **全连接与输出层**:将最大池化的结果通过全连接层输出,与DNN模型一样,最后输出层的神经元个数与样本的类别数量一致,且输出之和为1。

**通过PaddlePaddle实现该CNN结构的代码如下:**

```python
import paddle.v2 as paddle

def convolution_net(dict_dim, class_dim=2, emb_dim=28, hid_dim=128):
    """
    cnn network definition

    :param dict_dim: size of word dictionary
    :type input_dim: int
    :params class_dim: number of instance class
    :type class_dim: int
    :params emb_dim: embedding vector dimension
    :type emb_dim: int
    :params hid_dim: number of same size convolution kernels
    :type hid_dim: int
    """

    # input layers
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(dict_dim))
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))

    #embedding layer
    emb = paddle.layer.embedding(input=data, size=emb_dim)

    # convolution layers with max pooling
    conv_3 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=3, hidden_size=hid_dim)
    conv_4 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=4, hidden_size=hid_dim)

    # fc and output layer
    output = paddle.layer.fc(
        input=[conv_3, conv_4], size=class_dim, act=paddle.activation.Softmax())

    cost = paddle.layer.classification_cost(input=output, label=lbl)

    return cost, output, lbl
```

该CNN网络的输入数据类型和前面介绍过的DNN一致。`paddle.networks.sequence_conv_pool`为PaddlePaddle中已经封装好的带有池化的文本序列卷积模块,该模块的`context_len`参数用于指定卷积核在同一时间覆盖的文本长度,即图2中的卷积核的高度;`hidden_size`用于指定该类型的卷积核的数量。可以看到,上述代码定义的结构中使用了128个大小为3的卷积核和128个大小为4的卷积核,这些卷积的结果经过最大池化和结果拼接后产生一个256维的向量,向量经过一个全连接层输出最终预测结果。

## 自定义数据
本样例中的代码通过`Paddle.dataset.imdb.train`接口使用了PaddlePaddle自带的样例数据,在第一次运行代码时,PaddlePaddle会自动下载并缓存所需的数据。如果希望使用自己的数据进行训练,需要自行编写数据读取接口。

编写数据读取接口的关键在于实现一个Python生成器,生成器负责从原始输入文本中解析出一条训练样本,并组合成适当的数据形式传送给网络中的data layer。例如在本样例中,data layer需要的数据类型为`paddle.data_type.integer_value_sequence`,本质上是一个Python list。因此我们的生成器需要完成:从文件中读取数据, 以及转换成适当形式的Python list,这两件事情。

假设原始数据的格式为:

```
PaddlePaddle is good    1  
What a terrible weather    0
```
每一行为一条样本,样本包括了原始语料和标签,语料内部单词以空格分隔,语料和标签之间用`\t`分隔。对以上格式的数据,可以使用如下自定义的数据读取接口为PaddlePaddle返回训练数据:

```python
def encode_word(word, word_dict):
    """
    map word to id

    :param word: the word to be mapped
    :type word: str
    :param word_dict: word dictionary
    :type word_dict: Python dict
    """

    if word_dict.has_key(word):
        return word_dict[word]
    else:
        return word_dict['<unk>']

def data_reader(file_name, word_dict):
    """
    Reader interface for training data

    :param file_name: data file name
    :type file_name: str
    :param word_dict: word dictionary
    :type word_dict: Python dict
    """

    def reader():
        with open(file_name, "r") as f:
            for line in f:
                ins, label = line.strip('\n').split('\t')
                ins_data = [int(encode_word(w, word_dict)) for w in ins.split(' ')]
                yield ins_data, int(label)
    return reader
```

`word_dict`是字典,用来将原始的单词字符串转化为在字典中的序号。可以用`data_reader`替换原先代码中的`Paddle.dataset.imdb.train`接口用以提供自定义的训练数据。

## 运行与输出

本部分以上文介绍的DNN网络为例,介绍如何利用样例中的`text_classification_dnn.py`脚本进行DNN网络的训练和对新样本的预测。

`text_classification_dnn.py`中的代码分为四部分:

- **fc_net函数**:定义dnn网络结构,上文已经有说明。

- **train\_dnn\_model函数**:模型训练函数。定义优化方式、训练输出等内容,并组织训练流程。每完成一个pass的训练,程序都会将当前的模型参数保存在硬盘上,文件名为:`dnn_params_pass***.tar.gz`,其中`***`表示pass的id,从0开始计数。本函数接受一个整数类型的参数,表示训练pass的总轮数。

- **dnn_infer函数**:载入已有模型并对新样本进行预测。函数开始运行后会从当前路径下寻找并读取指定名称的参数文件,加载其中的模型参数,并对test数据集中的样本进行预测。

- **main函数**:主函数

要运行本样例,直接在`text_classification_dnn.py`所在路径下执行`python text_classification_dnn.py`即可,样例会自动依次执行数据集下载、数据读取、模型训练和保存、模型读取、新样本预测等步骤。

预测的输出形式为:

```
[ 0.99892634  0.00107362] 0
[ 0.00107638  0.9989236 ] 1
[ 0.98185927  0.01814074] 0
[ 0.31667888  0.68332112] 1
[ 0.98853314  0.01146684] 0
```

每一行表示一条样本的预测结果。前两列表示该样本属于0、1这两个类别的预测概率,最后一列表示样本的实际label。

在运行CNN模型的`text_classification_cnn.py`脚本中,网络模型定义在`convolution_net`函数中,模型训练函数名为`train_cnn_model`,预测函数名为`cnn_infer`。其他用法和`text_classification_dnn.py`是一致的。

</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
        document.getElementById("markdown").innerHTML)
</script>
</body>