model.py 3.8 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import math

import numpy as np
import paddle
import paddle.nn as nn

from paddlenlp.layers.crf import LinearChainCrf, ViterbiDecoder


class BiGruCrf(nn.Layer):
    """The network for lexical analysis, based on two layers of BiGRU and one layer of CRF. More details see https://arxiv.org/abs/1807.01882

    Args:
        word_emb_dim (int): The dimension in which a word is embedded.
        hidden_size (int): The number of hidden nodes in the GRU layer.
        vocab_size (int): the word vocab size.
        num_labels (int): the labels amount.
        emb_lr (float, optional): The scaling of the learning rate of the embedding layer. Defaults to 2.0.
        crf_lr (float, optional): The scaling of the learning rate of the crf layer. Defaults to 0.2.
    """

    def __init__(self,
                 word_emb_dim,
                 hidden_size,
                 vocab_size,
                 num_labels,
                 emb_lr=2.0,
42 43
                 crf_lr=0.2,
                 with_start_stop_tag=True):
Z
Zeyu Chen 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        super(BiGruCrf, self).__init__()
        self.word_emb_dim = word_emb_dim
        self.vocab_size = vocab_size
        self.num_labels = num_labels
        self.hidden_size = hidden_size
        self.emb_lr = emb_lr
        self.crf_lr = crf_lr
        self.init_bound = 0.1

        self.word_embedding = nn.Embedding(
            num_embeddings=self.vocab_size,
            embedding_dim=self.word_emb_dim,
            weight_attr=paddle.ParamAttr(
                learning_rate=self.emb_lr,
                initializer=nn.initializer.Uniform(
                    low=-self.init_bound, high=self.init_bound)))

        self.gru = nn.GRU(
            input_size=self.word_emb_dim,
            hidden_size=self.hidden_size,
            num_layers=2,
            direction='bidirectional',
            weight_ih_attr=paddle.ParamAttr(
                initializer=nn.initializer.Uniform(
                    low=-self.init_bound, high=self.init_bound),
                regularizer=paddle.regularizer.L2Decay(coeff=1e-4)),
            weight_hh_attr=paddle.ParamAttr(
                initializer=nn.initializer.Uniform(
                    low=-self.init_bound, high=self.init_bound),
                regularizer=paddle.regularizer.L2Decay(coeff=1e-4)))

        self.fc = nn.Linear(
            in_features=self.hidden_size * 2,
77 78
            out_features=self.num_labels + 2 \
                if with_start_stop_tag else self.num_labels,
Z
Zeyu Chen 已提交
79 80 81 82 83
            weight_attr=paddle.ParamAttr(
                initializer=nn.initializer.Uniform(
                    low=-self.init_bound, high=self.init_bound),
                regularizer=paddle.regularizer.L2Decay(coeff=1e-4)))

84 85 86 87
        self.crf = LinearChainCrf(self.num_labels, self.crf_lr,
                                  with_start_stop_tag)
        self.viterbi_decoder = ViterbiDecoder(self.crf.transitions,
                                              with_start_stop_tag)
Z
Zeyu Chen 已提交
88 89 90 91 92 93 94

    def forward(self, inputs, lengths):
        word_embed = self.word_embedding(inputs)
        bigru_output, _ = self.gru(word_embed)
        emission = self.fc(bigru_output)
        _, prediction = self.viterbi_decoder(emission, lengths)
        return emission, lengths, prediction