introduction_cn.ipynb 6.7 KB
Notebook
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "03cfffa3-2398-4d55-bf1e-fe3e01f10d68",
   "metadata": {},
   "source": [
    "## 1. PP-Matting 模型简介\n",
    "\n",
W
wuyefeilin 已提交
10
    "在众多图像抠图算法中,为了追求精度,往往需要输入trimap作为辅助信息,但这极大限制了算法的使用性。PP-Matting作为一种trimap-free的抠图方法,有效克服了辅助信息带来的弊端,在Composition-1k和Distinctions-646数据集中取得了SOTA的效果。PP-Matting利用语义分支(SCB)提取图片高级语义信息并通过引导流设计(Guidance Flow)逐步引导高分辨率细节分支(HRDB)对过度区域的细节提取,最后通过融合模块实现语义和细节的融合得到最终的alpha matte。\n",
W
wuyefeilin 已提交
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    "\n",
    "更多细节可参考技术报告:https://arxiv.org/abs/2204.09433 。\n",
    "\n",
    "更多关于PaddleMatting的内容,可以点击 https://github.com/PaddlePaddle/PaddleSeg/tree/develop/Matting 进行了解。\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8cbcf510-dc56-43f9-9864-5e1de3c7b272",
   "metadata": {},
   "source": [
    "## 2. 模型效果及应用场景\n",
    "PP-Matting在人像上的抠图效果如下:\n",
    "<p align=\"center\">\n",
    "<img src=\"https://user-images.githubusercontent.com/30919197/179751613-d26f2261-7bcf-4066-a0a4-4c818e7065f0.gif\" width=\"100%\" height=\"100%\">\n",
    "</p>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8d9da224-edd4-4c9e-ab2d-cba7ee5a92a4",
   "metadata": {},
   "source": [
    "## 3. 模型如何使用"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2ac57be7-c00f-441e-ad82-635f6268b6bd",
   "metadata": {},
   "source": [
    "### 3.1 模型推理\n",
    "* 下载"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3ea22cb4-5bed-4ce0-858b-3bbb342e8ccf",
   "metadata": {
    "scrolled": true,
    "tags": []
   },
   "outputs": [],
   "source": [
57
    "!mkdir -p ~/work\n",
W
wuyefeilin 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    "%cd ~/work\n",
    "!git clone --depth 1  https://gitee.com/paddlepaddle/PaddleSeg"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fd7142e9-5202-4a4d-8a03-36fcc5ea0259",
   "metadata": {},
   "source": [
    "* 安装"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a7fd9575-4116-4fa7-86ee-0b2db7417300",
   "metadata": {
    "scrolled": true,
    "tags": []
   },
   "outputs": [],
   "source": [
    "%cd ~/work/PaddleSeg/Matting\n",
    "!pip install -r requirements.txt"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a0dd2390-e635-432b-9e0b-d7c9323f81a9",
   "metadata": {},
   "source": [
    "* 快速体验\n",
    "恭喜! 您已经成功安装了PaddleSeg,接下来快速体验图像抠图效果"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "81736dd2-e90d-4dac-b3c0-58424e2e8dc4",
   "metadata": {
    "scrolled": true,
    "tags": []
   },
   "outputs": [],
   "source": [
    "# 下载预训练模型\n",
    "!wget https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w18-human_512.pdparams\n",
    "# 下载图片\n",
    "!wget https://user-images.githubusercontent.com/30919197/200645066-6898ec5a-f1c5-4bf7-aa41-473a29977a86.jpeg\n",
    "# 在GPU上预测一张图片\n",
    "!export CUDA_VISIBLE_DEVICES=0\n",
    "!python tools/predict.py \\\n",
    "    --config configs/ppmatting/ppmatting-hrnet_w18-human_512.yml \\\n",
    "    --model_path ppmatting-hrnet_w18-human_512.pdparams \\\n",
    "    --image_path 200645066-6898ec5a-f1c5-4bf7-aa41-473a29977a86.jpeg \\\n",
    "    --save_dir ./output/results \\\n",
    "    --fg_estimate True"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ab60ad4-2908-40e2-9c08-34ac7978ef16",
   "metadata": {},
   "source": [
    "会在output/results文件夹下生成一个alpha图像和一个rgba图像。\n",
    "\n",
    "结果如下图:\n",
    "<div align=\"center\">\n",
    "<img src=\"https://user-images.githubusercontent.com/30919197/200647513-e744118a-bd2b-4de2-b740-6eaeaccf47b6.png\"  width = \"40%\"  /> \n",
    "<img src=\"https://user-images.githubusercontent.com/30919197/200647492-7fd5fd80-2c2a-4775-ad9e-fd1d476cba48.png\"  width = \"40%\"  />\n",
    "* </div>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "98c083d9-acd1-4e0a-855b-0a048983f251",
   "metadata": {},
   "source": [
    "### 3.2 模型训练\n",
    " * 克隆PaddleSeg仓库(详见3.1)。\n",
    " \n",
    " 具体训练参考PaddleSeg仓库Matting子目录相关教程\n",
    "https://github.com/PaddlePaddle/PaddleSeg/tree/develop/Matting 。"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e9b05c1e-cb59-4dd7-83c0-cb30dfefba60",
   "metadata": {},
   "source": [
    "## 4. 原理\n",
    "\n",
    "<div align=\"center\">\n",
    "<img src=\"https://user-images.githubusercontent.com/30919197/200649929-3fa07082-7980-49f8-9f7f-38c31c46de20.png\"  width = \"80%\"  />\n",
    "* </div>\n",
    "\n",
    "* 分支设计,明确语义预测和细节预测任务。\n",
    "* SCB(Semantic Context Branch)分支进行语义预测,保证图像整体预测正确性,其将图像粗略的分为三个部分,即前景、背景和过度区域。\n",
    "* HRDB(High-Resolution Detail Branch)维持高分辨率特征提取过程,保证细节不受损失。\n",
W
wuyefeilin 已提交
157
    "* 引导流结构设计(Guidance Flow)使HRDB分支获取SCB分支提取的语义信息,使HRDB分支能专注与过度区域的细节预测。\n"
W
wuyefeilin 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ae7e1030-9044-44f5-a0d3-5148e59d4753",
   "metadata": {},
   "source": [
    "## 5. 注意事项\n",
    "* 基于公开数据集Composition-1K和Distinctions-646的训练和预测需发邮件向作者申请。\n",
    "* PP-Matting开源了人像预训练模型,可根据具体的人像抠图场景,标注少量的数据进行finetune。"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7e238357-2f19-48c3-902e-9ba3c93f7818",
   "metadata": {},
   "source": [
    "## 6. 相关论文以及引用信息\n",
    "@article{chen2022pp,\n",
    "  title={PP-Matting: High-Accuracy Natural Image Matting},\n",
    "  author={Chen, Guowei and Liu, Yi and Wang, Jian and Peng, Juncai and Hao, Yuying and Chu, Lutao and Tang, Shiyu and Wu, Zewu and Chen, Zeyu and Yu, Zhiliang and others},\n",
    "  journal={arXiv preprint arXiv:2204.09433},\n",
    "  year={2022}\n",
    "}"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "py35-paddle1.2.0"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}