train.py 9.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os


def set_paddle_flags(flags):
    for key, value in flags.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


set_paddle_flags({
    'FLAGS_conv_workspace_size_limit': 500,
    'FLAGS_eager_delete_tensor_gb': 0,  # enable gc
    'FLAGS_memory_fraction_of_eager_deletion': 1,
    'FLAGS_fraction_of_gpu_memory_to_use': 0.98
})

import sys
import numpy as np
import time
import shutil
from utility import parse_args, print_arguments, SmoothedValue, TrainingStats, now_time, check_gpu
import collections

import paddle
import paddle.fluid as fluid
import reader
import models.model_builder as model_builder
import models.resnet as resnet
from learning_rate import exponential_with_warmup_decay
from config import cfg
import dist_utils

num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))


def get_device_num():
    # NOTE(zcd): for multi-processe training, each process use one GPU card.
    if num_trainers > 1:
        return 1
    return fluid.core.get_cuda_device_count()


def train():
    learning_rate = cfg.learning_rate
    image_shape = [3, cfg.TRAIN.max_size, cfg.TRAIN.max_size]

    if cfg.enable_ce:
        fluid.default_startup_program().random_seed = 1000
        fluid.default_main_program().random_seed = 1000
        import random
        random.seed(0)
        np.random.seed(0)

    devices_num = get_device_num()
    total_batch_size = devices_num * cfg.TRAIN.im_per_batch

    use_random = True
    if cfg.enable_ce:
        use_random = False
    model = model_builder.RCNN(
        add_conv_body_func=resnet.add_ResNet50_conv4_body,
        add_roi_box_head_func=resnet.add_ResNet_roi_conv5_head,
        use_pyreader=cfg.use_pyreader,
        use_random=use_random)
    model.build_model(image_shape)
    losses, keys = model.loss()
    loss = losses[0]
    fetch_list = losses

    boundaries = cfg.lr_steps
    gamma = cfg.lr_gamma
    step_num = len(cfg.lr_steps)
    values = [learning_rate * (gamma**i) for i in range(step_num + 1)]

    lr = exponential_with_warmup_decay(
        learning_rate=learning_rate,
        boundaries=boundaries,
        values=values,
        warmup_iter=cfg.warm_up_iter,
        warmup_factor=cfg.warm_up_factor)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=lr,
        regularization=fluid.regularizer.L2Decay(cfg.weight_decay),
        momentum=cfg.momentum)
    optimizer.minimize(loss)
    fetch_list = fetch_list + [lr]

    for var in fetch_list:
        var.persistable = True

    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if cfg.pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(cfg.pretrained_model, var.name))

        fluid.io.load_vars(exe, cfg.pretrained_model, predicate=if_exist)

    if cfg.parallel:
        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = True
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_iteration_per_drop_scope = 10

        if num_trainers > 1 and cfg.use_gpu:
            dist_utils.prepare_for_multi_process(exe, build_strategy,
                                                 fluid.default_main_program())
            # NOTE: the process is fast when num_threads is 1 
            # for multi-process training.
            exec_strategy.num_threads = 1

        train_exe = fluid.ParallelExecutor(
            use_cuda=bool(cfg.use_gpu),
            loss_name=loss.name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
    else:
        train_exe = exe

    shuffle = True
    if cfg.enable_ce:
        shuffle = False
    # NOTE: do not shuffle dataset when using multi-process training 
    shuffle_seed = None
    if num_trainers > 1:
        shuffle_seed = 1
    if cfg.use_pyreader:
        train_reader = reader.train(
            batch_size=cfg.TRAIN.im_per_batch,
            total_batch_size=total_batch_size,
            padding_total=cfg.TRAIN.padding_minibatch,
            shuffle=shuffle,
            shuffle_seed=shuffle_seed)
        if num_trainers > 1:
            assert shuffle_seed is not None, \
                "If num_trainers > 1, the shuffle_seed must be set, because " \
                "the order of batch data generated by reader " \
                "must be the same in the respective processes."
            # NOTE: the order of batch data generated by batch_reader
            # must be the same in the respective processes.
            if num_trainers > 1:
                train_reader = fluid.contrib.reader.distributed_batch_reader(
                    train_reader)
        py_reader = model.py_reader
        py_reader.decorate_paddle_reader(train_reader)
    else:
        if num_trainers > 1: shuffle = False
        train_reader = reader.train(
            batch_size=total_batch_size, shuffle=shuffle)
        feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())

    def save_model(postfix):
        model_path = os.path.join(cfg.model_save_dir, postfix)
        if os.path.isdir(model_path):
            shutil.rmtree(model_path)
        fluid.io.save_persistables(exe, model_path)

    def train_loop_pyreader():
        py_reader.start()
        train_stats = TrainingStats(cfg.log_window, keys)
        try:
            start_time = time.time()
            prev_start_time = start_time
            for iter_id in range(cfg.max_iter):
                prev_start_time = start_time
                start_time = time.time()
                outs = train_exe.run(fetch_list=[v.name for v in fetch_list])
                stats = {k: np.array(v).mean() for k, v in zip(keys, outs[:-1])}
                train_stats.update(stats)
                logs = train_stats.log()
                strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
                    now_time(), iter_id,
                    np.mean(outs[-1]), logs, start_time - prev_start_time)
                print(strs)
                sys.stdout.flush()
                if (iter_id + 1) % cfg.TRAIN.snapshot_iter == 0:
                    save_model("model_iter{}".format(iter_id))
            end_time = time.time()
            total_time = end_time - start_time
            last_loss = np.array(outs[0]).mean()
            if cfg.enable_ce:
                gpu_num = devices_num
                epoch_idx = iter_id + 1
                loss = last_loss
                print("kpis\teach_pass_duration_card%s\t%s" %
                      (gpu_num, total_time / epoch_idx))
                print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, loss))
        except (StopIteration, fluid.core.EOFException):
            py_reader.reset()

    def train_loop():
        start_time = time.time()
        prev_start_time = start_time
        start = start_time
        train_stats = TrainingStats(cfg.log_window, keys)
        for iter_id, data in enumerate(train_reader()):
            prev_start_time = start_time
            start_time = time.time()
            outs = train_exe.run(fetch_list=[v.name for v in fetch_list],
                                 feed=feeder.feed(data))
            stats = {k: np.array(v).mean() for k, v in zip(keys, outs[:-1])}
            train_stats.update(stats)
            logs = train_stats.log()
            strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
                now_time(), iter_id,
                np.mean(outs[-1]), logs, start_time - prev_start_time)
            print(strs)
            sys.stdout.flush()
            if (iter_id + 1) % cfg.TRAIN.snapshot_iter == 0:
                save_model("model_iter{}".format(iter_id))
            if (iter_id + 1) == cfg.max_iter:
                break
        end_time = time.time()
        total_time = end_time - start_time
        last_loss = np.array(outs[0]).mean()
        # only for ce
        if cfg.enable_ce:
            gpu_num = devices_num
            epoch_idx = iter_id + 1
            loss = last_loss
            print("kpis\teach_pass_duration_card%s\t%s" %
                  (gpu_num, total_time / epoch_idx))
            print("kpis\ttrain_loss_card%s\t%s" % (gpu_num, loss))

    if cfg.use_pyreader:
        train_loop_pyreader()
    else:
        train_loop()
    save_model('model_final')


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    check_gpu(args.use_gpu)
    train()