attention_model.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# -*- coding: utf-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
import numpy as np
from paddle.fluid import ParamAttr
from paddle.fluid.dygraph.base import to_variable
24
from paddle.fluid.dygraph.nn import Embedding
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
from rnn import BasicLSTMUnit
import numpy as np

INF = 1. * 1e5
alpha = 0.6
uniform_initializer = lambda x: fluid.initializer.UniformInitializer(low=-x, high=x)
zero_constant = fluid.initializer.Constant(0.0)

class AttentionModel(fluid.dygraph.Layer):
    def __init__(self,
                 hidden_size,
                 src_vocab_size,
                 tar_vocab_size,
                 batch_size,
                 num_layers=1,
                 init_scale=0.1,
                 dropout=None,
                 beam_size=1,
                 beam_start_token=1,
                 beam_end_token=2,
                 beam_max_step_num=100,
                 mode='train'):
        super(AttentionModel, self).__init__()
        self.hidden_size = hidden_size
        self.src_vocab_size = src_vocab_size
        self.tar_vocab_size = tar_vocab_size
        self.batch_size = batch_size
        self.num_layers = num_layers
        self.init_scale = init_scale
        self.dropout = dropout
        self.beam_size = beam_size
        self.beam_start_token = beam_start_token
        self.beam_end_token = beam_end_token
        self.beam_max_step_num = beam_max_step_num
        self.mode = mode
        self.kinf = 1e9

        param_attr = ParamAttr(initializer=uniform_initializer(self.init_scale))
        bias_attr = ParamAttr(initializer=zero_constant)
        forget_bias = 1.0

        self.src_embeder = Embedding(
            size=[self.src_vocab_size, self.hidden_size],
            param_attr=fluid.ParamAttr(
                name='source_embedding',
                initializer=uniform_initializer(init_scale)))

        self.tar_embeder = Embedding(
            size=[self.tar_vocab_size, self.hidden_size],
            is_sparse=False,
            param_attr=fluid.ParamAttr(
                name='target_embedding',
                initializer=uniform_initializer(init_scale)))

        self.enc_units = []
        for i in range(num_layers):
            self.enc_units.append(
                self.add_sublayer("enc_units_%d" % i,
                    BasicLSTMUnit(
                    hidden_size=self.hidden_size, 
                    input_size=self.hidden_size,
                    param_attr=param_attr, 
                    bias_attr=bias_attr, 
                    forget_bias=forget_bias)))

        self.dec_units = []
        for i in range(num_layers):
            if i == 0:
                self.dec_units.append(
                    self.add_sublayer("dec_units_%d" % i,
                        BasicLSTMUnit(
                        hidden_size=self.hidden_size, 
                        input_size=self.hidden_size * 2,
                        param_attr=param_attr, 
                        bias_attr=bias_attr, 
                        forget_bias=forget_bias)))
            else:
                self.dec_units.append(
                    self.add_sublayer("dec_units_%d" % i,
                    BasicLSTMUnit(
                    hidden_size=self.hidden_size, 
                    input_size=self.hidden_size,
                    param_attr=param_attr, 
                    bias_attr=bias_attr, 
                    forget_bias=forget_bias)))
        
        self.fc = fluid.dygraph.nn.Linear(self.hidden_size,
                self.tar_vocab_size, 
                param_attr=param_attr,
                bias_attr=False)
        
        self.attn_fc = fluid.dygraph.nn.Linear(self.hidden_size, 
                self.hidden_size, 
                param_attr=param_attr,
                bias_attr=False)
        
        self.concat_fc = fluid.dygraph.nn.Linear(2 * self.hidden_size, 
                self.hidden_size, 
                param_attr=param_attr,
                bias_attr=False)

    def _transpose_batch_time(self, x):
        return fluid.layers.transpose(x, [1, 0] + list(range(2, len(x.shape))))

    def _merge_batch_beams(self, x):
        return fluid.layers.reshape(x, shape=(-1,x.shape[2]))

    def tile_beam_merge_with_batch(self, x):
        x = fluid.layers.unsqueeze(x, [1])  # [batch_size, 1, ...]
        expand_times = [1] * len(x.shape)
        expand_times[1] = self.beam_size
        x = fluid.layers.expand(x, expand_times)  # [batch_size, beam_size, ...]
        x = fluid.layers.transpose(x, list(range(2, len(x.shape))) +
                         [0, 1])  # [..., batch_size, beam_size]
        # use 0 to copy to avoid wrong shape
        x = fluid.layers.reshape(
            x, shape=[0] *
            (len(x.shape) - 2) + [-1])  # [..., batch_size * beam_size]
        x = fluid.layers.transpose(
            x, [len(x.shape) - 1] +
            list(range(0, len(x.shape) - 1)))  # [batch_size * beam_size, ...]
        return x

    def _split_batch_beams(self, x):
        return fluid.layers.reshape(x, shape=(-1, self.beam_size, x.shape[1]))

    def _expand_to_beam_size(self, x):
        x = fluid.layers.unsqueeze(x, [1])
        expand_times = [1] * len(x.shape)
        expand_times[1] = self.beam_size
        x = fluid.layers.expand(x, expand_times)
        return x

    def _real_state(self, state, new_state, step_mask):
        new_state = fluid.layers.elementwise_mul(new_state, step_mask, axis=0) - \
                    fluid.layers.elementwise_mul(state, (step_mask - 1), axis=0)
        return new_state
        
    def _gather(self, x, indices, batch_pos):
        topk_coordinates = fluid.layers.stack([batch_pos, indices], axis=2)
        return fluid.layers.gather_nd(x, topk_coordinates)

    def attention(self, query, enc_output, mask=None):
        query = fluid.layers.unsqueeze(query, [1])
        memory = self.attn_fc(enc_output)
        attn = fluid.layers.matmul(query, memory, transpose_y=True)

        if mask:
            attn = fluid.layers.transpose(attn, [1, 0, 2])
            attn = fluid.layers.elementwise_add(attn, mask * 1000000000, -1)
            attn = fluid.layers.transpose(attn, [1, 0, 2])
        weight = fluid.layers.softmax(attn)
        weight_memory = fluid.layers.matmul(weight, memory)

        return weight_memory

    def forward(self, inputs):
        inputs = [fluid.dygraph.to_variable(np_inp) for np_inp in inputs]
        src, tar, label, src_sequence_length, tar_sequence_length = inputs
        if src.shape[0] < self.batch_size:
            self.batch_size = src.shape[0]
        src_emb = self.src_embeder(self._transpose_batch_time(src))
        
        enc_hidden = to_variable(np.zeros((self.num_layers, self.batch_size, self.hidden_size), dtype='float32'))
        enc_cell = to_variable(np.zeros((self.num_layers, self.batch_size, self.hidden_size), dtype='float32'))

        max_seq_len = src_emb.shape[0]
        enc_len_mask = fluid.layers.sequence_mask(src_sequence_length, maxlen=max_seq_len, dtype="float32")
        enc_padding_mask = (enc_len_mask - 1.0)
        enc_len_mask = fluid.layers.transpose(enc_len_mask, [1, 0])
        enc_states = [[enc_hidden, enc_cell]]
        enc_outputs = []
        for l in range(max_seq_len):
            step_input = src_emb[l]
            step_mask = enc_len_mask[l]
            enc_hidden, enc_cell = enc_states[l]
            new_enc_hidden, new_enc_cell = [], []
            for i in range(self.num_layers):
                new_hidden, new_cell = self.enc_units[i](step_input, enc_hidden[i], enc_cell[i])
                new_enc_hidden.append(new_hidden)
                new_enc_cell.append(new_cell)
                if self.dropout != None and self.dropout > 0.0:
                    step_input = fluid.layers.dropout(
                        new_hidden,
                        dropout_prob=self.dropout,
                        dropout_implementation='upscale_in_train')
                else:
                    step_input = new_hidden
            new_enc_hidden = [self._real_state(enc_hidden[i], new_enc_hidden[i], step_mask) for i in range(self.num_layers)]
            new_enc_cell = [self._real_state(enc_cell[i], new_enc_cell[i], step_mask) for i in range(self.num_layers)]
            enc_states.append([new_enc_hidden, new_enc_cell])
            enc_outputs.append(step_input)
        enc_outputs = fluid.layers.stack(enc_outputs)
        enc_outputs = self._transpose_batch_time(enc_outputs)

        if self.mode in ['train', 'eval']: 
            # calculation with input_feed derives from paper: https://arxiv.org/pdf/1508.04025.pdf
            input_feed = to_variable(np.zeros((self.batch_size, self.hidden_size), dtype='float32'))
            
            dec_hidden, dec_cell = enc_states[-1]
            tar_emb = self.tar_embeder(self._transpose_batch_time(tar))
            max_seq_len = tar_emb.shape[0]
            dec_output = []

            for step_idx in range(max_seq_len):
                step_input = tar_emb[step_idx]
                step_input = fluid.layers.concat([step_input, input_feed], 1)
                new_dec_hidden, new_dec_cell = [], []
                for i in range(self.num_layers):
                    new_hidden, new_cell = self.dec_units[i](step_input, dec_hidden[i], dec_cell[i])

                    new_dec_hidden.append(new_hidden)
                    new_dec_cell.append(new_cell)
                    if self.dropout != None and self.dropout > 0.0:
                        step_input = fluid.layers.dropout(
                            new_hidden,
                            dropout_prob=self.dropout,
                            dropout_implementation='upscale_in_train')
                    else:
                        step_input = new_hidden

                dec_att = self.attention(step_input, enc_outputs, enc_padding_mask)
                dec_att = fluid.layers.squeeze(dec_att, [1])
                concat_att_out = fluid.layers.concat([dec_att, step_input], 1)
                out = self.concat_fc(concat_att_out)
                input_feed = out
                dec_output.append(out)
                dec_hidden, dec_cell = new_dec_hidden, new_dec_cell

            dec_output = fluid.layers.stack(dec_output)
            dec_output = self.fc(self._transpose_batch_time(dec_output))
        
            loss = fluid.layers.softmax_with_cross_entropy(
            logits=dec_output, label=label, soft_label=False)
            loss = fluid.layers.squeeze(loss, axes=[2])
            max_tar_seq_len = fluid.layers.shape(tar)[1]
            tar_mask = fluid.layers.sequence_mask(
                tar_sequence_length, maxlen=max_tar_seq_len, dtype='float32')
            loss = loss * tar_mask
            loss = fluid.layers.reduce_mean(loss, dim=[0])
            loss = fluid.layers.reduce_sum(loss)
            return loss
            
        elif self.mode in ['beam_search']:
            enc_outputs = self.tile_beam_merge_with_batch(enc_outputs)
            enc_padding_mask = self.tile_beam_merge_with_batch(enc_padding_mask)
            batch_beam_shape = (self.batch_size, self.beam_size)
            vocab_size_tensor = to_variable(np.full((1), self.tar_vocab_size))
X
Xing Wu 已提交
273
            start_token_tensor = to_variable(np.full(batch_beam_shape, self.beam_start_token, dtype='int64'))
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
            end_token_tensor = to_variable(np.full(batch_beam_shape, self.beam_end_token, dtype='int64'))
            step_input = self.tar_embeder(start_token_tensor)
            input_feed = to_variable(np.zeros((self.batch_size, self.hidden_size), dtype='float32'))
            input_feed = self._expand_to_beam_size(input_feed)
            input_feed = self._merge_batch_beams(input_feed)
            beam_finished = to_variable(np.full(batch_beam_shape, 0, dtype='float32'))
            beam_state_log_probs = to_variable(np.array([[0.] + [-self.kinf] * (self.beam_size - 1)], dtype="float32"))
            beam_state_log_probs = fluid.layers.expand(beam_state_log_probs, [self.batch_size, 1])
            
            dec_hidden, dec_cell = enc_states[-1]
            dec_hidden = [self._expand_to_beam_size(state) for state in dec_hidden]
            dec_cell = [self._expand_to_beam_size(state) for state in dec_cell]
            
            batch_pos = fluid.layers.expand(
                fluid.layers.unsqueeze(to_variable(np.arange(0, self.batch_size, 1, dtype="int64")), [1]),
                [1, self.beam_size])
            predicted_ids = []
            parent_ids = []

            for step_idx in range(self.beam_max_step_num):
                if fluid.layers.reduce_sum(1 - beam_finished).numpy()[0] == 0:
                    break
                step_input = self._merge_batch_beams(step_input)
                step_input = fluid.layers.concat([step_input, input_feed], 1)
                new_dec_hidden, new_dec_cell = [], []
                dec_hidden = [self._merge_batch_beams(state) for state in dec_hidden]
                dec_cell = [self._merge_batch_beams(state) for state in dec_cell]

                for i in range(self.num_layers):
                    new_hidden, new_cell = self.dec_units[i](step_input, dec_hidden[i], dec_cell[i])
                    new_dec_hidden.append(new_hidden)
                    new_dec_cell.append(new_cell)
                    if self.dropout != None and self.dropout > 0.0:
                        step_input = fluid.layers.dropout(
                            new_hidden,
                            dropout_prob=self.dropout,
                            dropout_implementation='upscale_in_train')
                    else:
                        step_input = new_hidden
                dec_att = self.attention(step_input, enc_outputs, enc_padding_mask)
                dec_att = fluid.layers.squeeze(dec_att, [1])
                concat_att_out = fluid.layers.concat([dec_att, step_input], 1)
                out = self.concat_fc(concat_att_out)
                input_feed = out
                cell_outputs = self._split_batch_beams(out)
                cell_outputs = self.fc(cell_outputs)
                step_log_probs = fluid.layers.log(fluid.layers.softmax(cell_outputs))
                noend_array = [-self.kinf] * self.tar_vocab_size
                noend_array[self.beam_end_token] = 0 # [-kinf, -kinf, ..., 0, -kinf, ...]
                noend_mask_tensor = to_variable(np.array(noend_array,dtype='float32'))
                # set finished position to one-hot probability of <eos>
                step_log_probs = fluid.layers.elementwise_mul(
                        fluid.layers.expand(fluid.layers.unsqueeze(beam_finished, [2]), [1, 1, self.tar_vocab_size]),
                    noend_mask_tensor, axis=-1) - \
                    fluid.layers.elementwise_mul(step_log_probs, (beam_finished - 1), axis=0)
                log_probs = fluid.layers.elementwise_add(
                    x=step_log_probs, y=beam_state_log_probs, axis=0)
                scores = fluid.layers.reshape(log_probs, [-1, self.beam_size * self.tar_vocab_size])
                topk_scores, topk_indices = fluid.layers.topk(input=scores, k=self.beam_size)
                beam_indices = fluid.layers.elementwise_floordiv(topk_indices, vocab_size_tensor) # in which beam
                token_indices = fluid.layers.elementwise_mod(topk_indices, vocab_size_tensor) # position in beam
                next_log_probs = self._gather(scores, topk_indices, batch_pos) # 

                new_dec_hidden = [self._split_batch_beams(state) for state in new_dec_hidden]
                new_dec_cell = [self._split_batch_beams(state) for state in new_dec_cell]
                new_dec_hidden = [self._gather(x, beam_indices, batch_pos) for x in new_dec_hidden]
                new_dec_cell = [self._gather(x, beam_indices, batch_pos) for x in new_dec_cell]
                
                next_finished = self._gather(beam_finished, beam_indices, batch_pos)              
                next_finished = fluid.layers.cast(next_finished, "bool")
                next_finished = fluid.layers.logical_or(next_finished, fluid.layers.equal(token_indices, end_token_tensor))
                next_finished = fluid.layers.cast(next_finished, "float32")
                # prepare for next step
                dec_hidden, dec_cell = new_dec_hidden, new_dec_cell
                beam_finished = next_finished
                beam_state_log_probs = next_log_probs
X
Xing Wu 已提交
350
                step_input = self.tar_embeder(token_indices)
351 352 353 354 355 356 357 358 359 360
                predicted_ids.append(token_indices)
                parent_ids.append(beam_indices)

            predicted_ids = fluid.layers.stack(predicted_ids)
            parent_ids = fluid.layers.stack(parent_ids)
            predicted_ids = fluid.layers.gather_tree(predicted_ids, parent_ids)
            predicted_ids = self._transpose_batch_time(predicted_ids)
            return predicted_ids
        else:
            print("not support mode ", self.mode)
X
Xing Wu 已提交
361
            raise Exception("not support mode: " + self.mode)