predict.py 3.0 KB
Newer Older
X
Xing Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import time
import sys

import paddle.fluid as fluid
import paddle
import utils
import reader
import math
from sequence_labeling import lex_net, Chunk_eval
parser = argparse.ArgumentParser(__doc__)
# 1. model parameters
utils.load_yaml(parser, 'conf/args.yaml')
args = parser.parse_args()

def do_infer(args):
    dataset = reader.Dataset(args)

    if args.use_cuda:
        place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
        if args.use_data_parallel else fluid.CUDAPlace(0)
    else:
        place = fluid.CPUPlace()

    with fluid.dygraph.guard(place):
        infer_loader = reader.create_dataloader(
            args,
            file_name=args.infer_data,
            place=place,
            model='lac',
            reader=dataset,
            mode='infer')
        model = lex_net(args, dataset.vocab_size, dataset.num_labels)
        load_path = args.init_checkpoint
        state_dict, _ = fluid.dygraph.load_dygraph(load_path)
        #import ipdb; ipdb.set_trace()
W
wuxing_iie 已提交
53
        state_dict["linear_chain_crf.weight"]=state_dict["crf_decoding.weight"]
X
Xing Wu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        model.set_dict(state_dict)
        model.eval()
        chunk_eval = Chunk_eval(int(math.ceil((dataset.num_labels - 1) / 2.0)), "IOB")
        chunk_evaluator = fluid.metrics.ChunkEvaluator()
        chunk_evaluator.reset()

        def input_check(data):
       	    if data.lod()[0][-1] == 0:
                return data[0]['words']
            return None
            
        def infer_process(reader):
            results = []
           
            for batch in reader():
                # import ipdb; ipdb.set_trace()
                words, length = batch
                #crf_decode = input_check(words)
                #if crf_decode:
                #    results += utils.parse_result(crf_decode, crf_decode, dataset)
                #    continue
			              
                crf_decode = model(words, length=length)
                results += utils.parse_padding_result(words.numpy(), crf_decode.numpy(), length.numpy(), dataset)          
            return results
            
        result = infer_process(infer_loader)
        for sent, tags in result:
            result_list = ['(%s, %s)' % (ch, tag) for ch, tag in zip(sent, tags)]
            print(''.join(result_list))

if __name__ == '__main__':
    args = parser.parse_args()
    do_infer(args)