data_reader.py 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15 16 17 18 19 20 21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from PIL import Image, ImageOps
import numpy as np

22 23 24 25 26 27
DATASET = "cityscapes"
A_LIST_FILE = "./data/"+DATASET+"/trainA.txt"
B_LIST_FILE = "./data/"+DATASET+"/trainB.txt"
A_TEST_LIST_FILE = "./data/"+DATASET+"/testA.txt"
B_TEST_LIST_FILE = "./data/"+DATASET+"/testB.txt"
IMAGES_ROOT = "./data/"+DATASET+"/"
X
xiaoting 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

def image_shape():
    return [3, 256, 256]


def max_images_num():
    return 2974


def reader_creater(list_file, cycle=True, shuffle=True, return_name=False):
    images = [IMAGES_ROOT + line for line in open(list_file, 'r').readlines()]

    def reader():
        while True:
            if shuffle:
                np.random.shuffle(images)
            for file in images:
                file = file.strip("\n\r\t ")
                image = Image.open(file)
                ## Resize
                image = image.resize((286, 286), Image.BICUBIC)
                ## RandomCrop
                i = np.random.randint(0, 30)
                j = np.random.randint(0, 30)
                image = image.crop((i, j , i+256, j+256))
                # RandomHorizontalFlip
                sed = np.random.rand()
                if sed > 0.5:
                    image = ImageOps.mirror(image)
                # ToTensor
                image = np.array(image).transpose([2, 0, 1]).astype('float32')
                image = image / 255.0
                # Normalize, mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]
                image = (image - 0.5) / 0.5
                
                if return_name:
                    yield image[np.newaxis, :], os.path.basename(file)
                else:
                    yield image
            if not cycle:
                break

    return reader


def a_reader(shuffle=True):
    """
    Reader of images with A style for training.
    """
    return reader_creater(A_LIST_FILE, shuffle=shuffle)


def b_reader(shuffle=True):
    """
    Reader of images with B style for training.
    """
    return reader_creater(B_LIST_FILE, shuffle=shuffle)


def a_test_reader():
    """
    Reader of images with A style for test.
    """
    return reader_creater(A_TEST_LIST_FILE, cycle=False, return_name=True)


def b_test_reader():
    """
    Reader of images with B style for test.
    """
    return reader_creater(B_TEST_LIST_FILE, cycle=False, return_name=True)