init.py 8.6 KB
Newer Older
P
pkpk 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import six
import ast
import copy

import numpy as np
import paddle.fluid as fluid


def cast_fp32_to_fp16(exe, main_program):
    print("Cast parameters to float16 data format.")
    for param in main_program.global_block().all_parameters():
        if not param.name.endswith(".master"):
            param_t = fluid.global_scope().find_var(param.name).get_tensor()
            data = np.array(param_t)
            if param.name.find("layer_norm") == -1:
                param_t.set(np.float16(data).view(np.uint16), exe.place)
            master_param_var = fluid.global_scope().find_var(param.name +
                                                             ".master")
            if master_param_var is not None:
                master_param_var.get_tensor().set(data, exe.place)


def init_checkpoint(exe, init_checkpoint_path, main_program, use_fp16=False):
    assert os.path.exists(
        init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path

    def existed_persitables(var):
        if not fluid.io.is_persistable(var):
            return False
        return os.path.exists(os.path.join(init_checkpoint_path, var.name))

    fluid.io.load_vars(
        exe,
        init_checkpoint_path,
        main_program=main_program,
        predicate=existed_persitables)
    print("Load model from {}".format(init_checkpoint_path))

    if use_fp16:
        cast_fp32_to_fp16(exe, main_program)


def init_pretraining_params(exe,
                            pretraining_params_path,
                            main_program,
                            use_fp16=False):
    assert os.path.exists(pretraining_params_path
                          ), "[%s] cann't be found." % pretraining_params_path

    def existed_params(var):
        if not isinstance(var, fluid.framework.Parameter):
            return False
        return os.path.exists(os.path.join(pretraining_params_path, var.name))

    fluid.io.load_vars(
        exe,
        pretraining_params_path,
        main_program=main_program,
        predicate=existed_params)
    print("Load pretraining parameters from {}.".format(
        pretraining_params_path))

    if use_fp16:
        cast_fp32_to_fp16(exe, main_program)


def init_from_static_model(dir_path, cls_model, bert_config):
    def load_numpy_weight(file_name):
        res = np.load(os.path.join(dir_path, file_name), allow_pickle=True)
        assert res is not None
        return res

    # load word embedding
    _param = load_numpy_weight("word_embedding")
    cls_model.bert_layer._src_emb.set_dict({"weight": _param})
    print("INIT word embedding")

    _param = load_numpy_weight("pos_embedding")
    cls_model.bert_layer._pos_emb.set_dict({"weight": _param})
    print("INIT pos embedding")

    _param = load_numpy_weight("sent_embedding")
    cls_model.bert_layer._sent_emb.set_dict({"weight": _param})
    print("INIT sent embedding")

    _param0 = load_numpy_weight("pooled_fc.w_0")
    _param1 = load_numpy_weight("pooled_fc.b_0")
    cls_model.bert_layer.pooled_fc.set_dict({
        "weight": _param0,
        "bias": _param1
    })
    print("INIT pooled_fc")

    _param0 = load_numpy_weight("pre_encoder_layer_norm_scale")
    _param1 = load_numpy_weight("pre_encoder_layer_norm_bias")
    cls_model.bert_layer.pre_process_layer._sub_layers["layer_norm_0"].set_dict(
        {
            "weight": _param0,
            "bias": _param1
        })
    print("INIT pre_encoder layer norm")

    for _i in range(bert_config["num_hidden_layers"]):
        _param_weight = "encoder_layer_%d_multi_head_att_query_fc.w_0" % _i
        _param_bias = "encoder_layer_%d_multi_head_att_query_fc.b_0" % _i

        _param_weight = load_numpy_weight(_param_weight)
        _param_bias = load_numpy_weight(_param_bias)

        cls_model.bert_layer._encoder._sub_layers[
            "esl_%d" % _i]._multihead_attention_layer._q_fc.set_dict({
                "weight": _param_weight,
                "bias": _param_bias
            })
        print("INIT multi_head_att_query_fc %d" % _i)

        _param_weight = "encoder_layer_%d_multi_head_att_key_fc.w_0" % _i
        _param_bias = "encoder_layer_%d_multi_head_att_key_fc.b_0" % _i

        _param_weight = load_numpy_weight(_param_weight)
        _param_bias = load_numpy_weight(_param_bias)

        cls_model.bert_layer._encoder._sub_layers[
            "esl_%d" % _i]._multihead_attention_layer._k_fc.set_dict({
                "weight": _param_weight,
                "bias": _param_bias
            })
        print("INIT multi_head_att_key_fc %d" % _i)

        _param_weight = "encoder_layer_%d_multi_head_att_value_fc.w_0" % _i
        _param_bias = "encoder_layer_%d_multi_head_att_value_fc.b_0" % _i

        _param_weight = load_numpy_weight(_param_weight)
        _param_bias = load_numpy_weight(_param_bias)

        cls_model.bert_layer._encoder._sub_layers[
            "esl_%d" % _i]._multihead_attention_layer._v_fc.set_dict({
                "weight": _param_weight,
                "bias": _param_bias
            })
        print("INIT multi_head_att_value_fc %d" % _i)

        # init output fc
        _param_weight = "encoder_layer_%d_multi_head_att_output_fc.w_0" % _i
        _param_bias = "encoder_layer_%d_multi_head_att_output_fc.b_0" % _i

        _param_weight = load_numpy_weight(_param_weight)
        _param_bias = load_numpy_weight(_param_bias)

        cls_model.bert_layer._encoder._sub_layers[
            "esl_%d" % _i]._multihead_attention_layer._proj_fc.set_dict({
                "weight": _param_weight,
                "bias": _param_bias
            })
        print("INIT multi_head_att_output_fc %d" % _i)

        # init layer_norm 1
        _param_weight = "encoder_layer_%d_post_att_layer_norm_scale" % _i
        _param_bias = "encoder_layer_%d_post_att_layer_norm_bias" % _i

        _param_weight = load_numpy_weight(_param_weight)
        _param_bias = load_numpy_weight(_param_bias)

        cls_model.bert_layer._encoder._sub_layers[
            "esl_%d" % _i]._postprocess_layer.layer_norm_0.set_dict({
                "weight": _param_weight,
                "bias": _param_bias
            })
        print("INIT layer norm in attention at %d layer" % _i)

        # init layer_norm 2
        _param_weight = "encoder_layer_%d_post_ffn_layer_norm_scale" % _i
        _param_bias = "encoder_layer_%d_post_ffn_layer_norm_bias" % _i

        _param_weight = load_numpy_weight(_param_weight)
        _param_bias = load_numpy_weight(_param_bias)

        cls_model.bert_layer._encoder._sub_layers[
            "esl_%d" % _i]._postprocess_layer2.layer_norm_0.set_dict({
                "weight": _param_weight,
                "bias": _param_bias
            })
        print("INIT layer norm in FFN at %d layer" % _i)

        # init FFN 1
        _param_weight = "encoder_layer_%d_ffn_fc_0.w_0" % _i
        _param_bias = "encoder_layer_%d_ffn_fc_0.b_0" % _i

        _param_weight = load_numpy_weight(_param_weight)
        _param_bias = load_numpy_weight(_param_bias)

        cls_model.bert_layer._encoder._sub_layers[
            "esl_%d" % _i]._positionwise_feed_forward._i2h.set_dict({
                "weight": _param_weight,
                "bias": _param_bias
            })
        print("INIT FFN-1 at %d layer" % _i)

        # init FFN 2
        _param_weight = "encoder_layer_%d_ffn_fc_1.w_0" % _i
        _param_bias = "encoder_layer_%d_ffn_fc_1.b_0" % _i

        _param_weight = load_numpy_weight(_param_weight)
        _param_bias = load_numpy_weight(_param_bias)

        cls_model.bert_layer._encoder._sub_layers[
            "esl_%d" % _i]._positionwise_feed_forward._h2o.set_dict({
                "weight": _param_weight,
                "bias": _param_bias
            })
        print("INIT FFN-2 at %d layer" % _i)

    # init cls fc
    #_param_weight = "cls_out_w"
    #_param_bias = "cls_out_b"

    #_param_weight = load_numpy_weight(_param_weight)
    #_param_bias = load_numpy_weight(_param_bias)

    #cls_model.cls_fc.set_dict({"weight":_param_weight, "bias":_param_bias})
    #print("INIT CLS FC layer")
    return True