dry_run.py 4.2 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle import fluid
import paddle.fluid.dygraph as dg

from hparams import hparams, hparams_debug_string
from deepvoice3_paddle import frontend
from deepvoice3_paddle.deepvoice3 import DeepVoiceTTS


def dry_run(model):
    """
    Run the model once, just to get it initialized.
    """
    model.train()
    _frontend = getattr(frontend, hparams.frontend)
    batch_size = 4
    enc_length = 157
    snd_sample_length = 500

    r = hparams.outputs_per_step
    downsample_step = hparams.downsample_step
    n_speakers = hparams.n_speakers

    # make sure snd_sample_length can be divided by r * downsample_step
    linear_shift = r * downsample_step
    snd_sample_length += linear_shift - snd_sample_length % linear_shift
    decoder_length = snd_sample_length // downsample_step // r
    mel_length = snd_sample_length // downsample_step

    n_vocab = _frontend.n_vocab
    max_pos = hparams.max_positions
    spker_embed = hparams.speaker_embed_dim
    linear_dim = model.linear_dim
    mel_dim = hparams.num_mels

    x = np.random.randint(
51
        low=0, high=n_vocab, size=(batch_size, enc_length), dtype="int64")
F
Feiyu Chan 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    input_lengths = np.arange(
        enc_length - batch_size + 1, enc_length + 1, dtype="int64")
    mel = np.random.randn(batch_size, mel_dim, 1, mel_length).astype("float32")
    y = np.random.randn(batch_size, linear_dim, 1,
                        snd_sample_length).astype("float32")

    text_positions = np.tile(
        np.arange(
            0, enc_length, dtype="int64"), (batch_size, 1))
    text_mask = text_positions > np.expand_dims(input_lengths, 1)
    text_positions[text_mask] = 0

    frame_positions = np.tile(
        np.arange(
            1, decoder_length + 1, dtype="int64"), (batch_size, 1))

    done = np.zeros(shape=(batch_size, 1, 1, decoder_length), dtype="float32")
    target_lengths = np.array([snd_sample_length] * batch_size).astype("int64")

    speaker_ids = np.random.randint(
72
        low=0, high=n_speakers, size=(batch_size),
F
Feiyu Chan 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        dtype="int64") if n_speakers > 1 else None

    ismultispeaker = speaker_ids is not None

    x = dg.to_variable(x)
    input_lengths = dg.to_variable(input_lengths)
    mel = dg.to_variable(mel)
    y = dg.to_variable(y)
    text_positions = dg.to_variable(text_positions)
    frame_positions = dg.to_variable(frame_positions)
    done = dg.to_variable(done)
    target_lengths = dg.to_variable(target_lengths)
    speaker_ids = dg.to_variable(
        speaker_ids) if speaker_ids is not None else None

    # these two fields are used as numpy ndarray
    text_lengths = input_lengths.numpy()
    decoder_lengths = target_lengths.numpy() // r // downsample_step

    max_seq_len = max(text_lengths.max(), decoder_lengths.max())
    if max_seq_len >= hparams.max_positions:
        raise RuntimeError(
            "max_seq_len ({}) >= max_posision ({})\n"
            "Input text or decoder targget length exceeded the maximum length.\n"
            "Please set a larger value for ``max_position`` in hyper parameters."
            .format(max_seq_len, hparams.max_positions))

    # cause paddle's embedding layer expect shape[-1] == 1

    # first dry run runs the whole model
    mel_outputs, linear_outputs, attn, done_hat = model(
        x, input_lengths, mel, speaker_ids, text_positions, frame_positions)

    num_parameters = 0
    for k, v in model.state_dict().items():
        print("{}|{}|{}".format(k, v.shape, np.prod(v.shape)))
        num_parameters += np.prod(v.shape)
    print("now model has {} parameters".format(len(model.state_dict())))
    print("now model has {} elements".format(num_parameters))