mmoe_train.py 5.2 KB
Newer Older
Z
zhang wenhui 已提交
1 2
import paddle.fluid as fluid
import numpy as np
Z
zhang wenhui 已提交
3 4
import time
from args import *
Z
zhang wenhui 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


def fc_layers(input, layers, acts, prefix):
    fc_layers_input = [input]
    fc_layers_size = layers
    fc_layers_act = acts
    init_range = 0.2
    scales_tmp = [input.shape[1]] + fc_layers_size
    scales = []
    for i in range(len(scales_tmp)):
        scales.append(init_range / (scales_tmp[i]**0.5))
    for i in range(len(fc_layers_size)):
        name = prefix + "_" + str(i)
        fc = fluid.layers.fc(
                input = fc_layers_input[-1],
                size = fc_layers_size[i],
                act = fc_layers_act[i],
                param_attr = \
                        fluid.ParamAttr(learning_rate=1.0, \
                        initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=1.0 * scales[i])),
                bias_attr = \
                        fluid.ParamAttr(learning_rate=1.0, \
                        initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=1.0 * scales[i])),
                name=name)
        fc_layers_input.append(fc)
    return fc_layers_input[-1]


def mmoe_layer(inputs, expert_num=8, gate_num=3):

    expert_out = []
    expert_nn = [3]
    expert_act = ['relu']
    for i in range(0, expert_num):
        cur_expert = fc_layers(inputs, expert_nn, expert_act,
                               'expert_' + str(i))
        expert_out.append(cur_expert)
    expert_concat = fluid.layers.concat(expert_out, axis=1)
    expert_concat = fluid.layers.reshape(expert_concat,
                                         [-1, expert_num, expert_nn[-1]])

    outs = []
    for i in range(0, gate_num):
        cur_gate = fluid.layers.fc(input=inputs,
                                   size=expert_num,
                                   act='softmax',
                                   name='gate_' + str(i))
        cur_gate_expert = fluid.layers.elementwise_mul(
            expert_concat, cur_gate, axis=0)
        cur_gate_expert = fluid.layers.reduce_sum(cur_gate_expert, dim=1)
        cur_fc = fc_layers(cur_gate_expert, [64, 32, 16, 1],
                           ['relu', 'relu', 'relu', None], 'out_' + str(i))
        outs.append(cur_fc)
    return outs


Z
zhang wenhui 已提交
61
def model(dict_dim, emb_dim):
Z
zhang wenhui 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    label_like = fluid.layers.data(
        name="label_like",
        shape=[-1, 1],
        dtype="int64",
        lod_level=0,
        append_batch_size=False)
    label_comment = fluid.layers.data(
        name="label_comment",
        shape=[-1, 1],
        dtype="int64",
        lod_level=0,
        append_batch_size=False)
    label_share = fluid.layers.data(
        name="label_share",
        shape=[-1, 1],
        dtype="int64",
        lod_level=0,
        append_batch_size=False)

    a_data = fluid.layers.data(
        name="a", shape=[-1, 1], dtype="int64", append_batch_size=False)
    emb = fluid.layers.embedding(input=a_data, size=[dict_dim, emb_dim])

    outs = mmoe_layer(emb, expert_num=8, gate_num=3)

    output_like = fluid.layers.sigmoid(
        fluid.layers.clip(
            outs[0], min=-15.0, max=15.0), name="output_like")
    output_comment = fluid.layers.sigmoid(
        fluid.layers.clip(
            outs[1], min=-15.0, max=15.0), name="output_comment")
    output_share = fluid.layers.sigmoid(
        fluid.layers.clip(
            outs[2], min=-15.0, max=15.0), name="output_share")

    cost_like = fluid.layers.log_loss(
        input=output_like,
        label=fluid.layers.cast(
            x=label_like, dtype='float32'))
    cost_comment = fluid.layers.log_loss(
        input=output_comment,
        label=fluid.layers.cast(
            x=label_comment, dtype='float32'))
    cost_share = fluid.layers.log_loss(
        input=output_share,
        label=fluid.layers.cast(
            x=label_share, dtype='float32'))

    avg_cost_like = fluid.layers.mean(x=cost_like)
    avg_cost_comment = fluid.layers.mean(x=cost_comment)
    avg_cost_share = fluid.layers.mean(x=cost_share)

    cost = avg_cost_like + avg_cost_comment + avg_cost_share
    return cost, [a_data, label_like, label_comment, label_share]


Z
zhang wenhui 已提交
118 119 120 121 122 123 124
args = parse_args()
batch_size = args.batch_size
dict_dim = args.dict_dim
emb_dim = args.emb_dim

print("batch_size:[%d], dict_dim:[%d], emb_dim:[%d], learning_rate:[%.4f]" %
      (batch_size, dict_dim, emb_dim, args.base_lr))
Z
zhang wenhui 已提交
125

Z
zhang wenhui 已提交
126 127
loss, data_list = model(dict_dim, emb_dim)
sgd = fluid.optimizer.SGD(learning_rate=args.base_lr)
Z
zhang wenhui 已提交
128
sgd.minimize(loss)
Z
zhang wenhui 已提交
129
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
Z
zhang wenhui 已提交
130 131 132 133 134 135 136 137
feeder = fluid.DataFeeder(feed_list=data_list, place=place)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for batch_id in range(100):
    data = [
        np.random.randint(
            2, size=(batch_size, 1)).astype('int64') for i in range(4)
    ]
Z
zhang wenhui 已提交
138
    begin = time.time()
Z
zhang wenhui 已提交
139 140 141 142 143 144 145 146
    loss_data, = exe.run(fluid.default_main_program(),
                         feed={
                             "a": data[0],
                             "label_like": data[1],
                             "label_comment": data[2],
                             "label_share": data[3]
                         },
                         fetch_list=[loss.name])
Z
zhang wenhui 已提交
147 148 149
    end = time.time()
    print("batch_id:[%d], loss:[%.5f], batch_time:[%.5f s]" %
          (batch_id, float(np.array(loss_data)), end - begin))