download.py 4.0 KB
Newer Older
L
LiuHao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Download script, download dataset and pretrain models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import io
import os
import sys
import time
import hashlib
import tarfile
import requests

def usage():
    desc = ("\nDownload datasets and pretrained models for Sentiment Classification task.\n"
        "Usage:\n"
        "   1. python download.py dataset\n"
        "   2. python download.py model\n")
    print(desc)

def extract(fname, dir_path):
    """
    Extract tar.gz file
    """
    try:
        tar = tarfile.open(fname, "r:gz")
        file_names = tar.getnames()
        for file_name in file_names:
            tar.extract(file_name, dir_path)
            print(file_name)
        tar.close()
    except Exception as e:
        raise e

def download(url, filename):
    """
    Download file
    """
    retry = 0
    retry_limit = 3
    chunk_size = 4096
L
LiuHao 已提交
59
    while not os.path.exists(filename):
L
LiuHao 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        if retry < retry_limit:
            retry += 1
        else:
            raise RuntimeError("Cannot download dataset ({0}) with retry {1} times.".
                format(url, retry_limit))
        try:
            start = time.time()
            size = 0
            res = requests.get(url, stream=True)
            filesize = int(res.headers['content-length'])
            if res.status_code == 200:
                print("[Filesize]: %0.2f MB" % (filesize / 1024 / 1024))
                # save by chunk
                with io.open(filename, "wb") as fout:
                    for chunk in res.iter_content(chunk_size=chunk_size):
                        if chunk:
                            fout.write(chunk)
                            size += len(chunk)
                            pr = '>' * int(size * 50 / filesize)
                            print('\r[Process ]: %s%.2f%%' % (pr, float(size / filesize*100)), end='')
            end = time.time()
            print("\n[CostTime]: %.2f s" % (end - start))
        except Exception as e:
            print(e)

def download_dataset(dir_path):
    BASE_URL = "https://baidu-nlp.bj.bcebos.com/"
    DATASET_NAME = "sentiment_classification-dataset-1.0.0.tar.gz"
    file_path = os.path.join(dir_path, DATASET_NAME)
    url = BASE_URL + DATASET_NAME
    
    if not os.path.exists(dir_path):
        os.makedirs(dir_path)
    # download dataset
    print("Downloading dataset: %s" % url)
    download(url, file_path)
    # extract dataset
    print("Extracting dataset: %s" % file_path)
    extract(file_path, dir_path)
    os.remove(file_path)

def download_model(dir_path):
    BASE_URL = "https://baidu-nlp.bj.bcebos.com/"
    MODEL_NAME = "sentiment_classification-1.0.0.tar.gz"
    if not os.path.exists(dir_path):
        os.makedirs(dir_path)
    url = BASE_URL + MODEL_NAME
L
LiuHao 已提交
107
    model_path = os.path.join(dir_path, MODEL_NAME)
L
LiuHao 已提交
108 109
    print("Downloading model: %s" % url)
    # download model
L
LiuHao 已提交
110
    download(url, model_path)
L
LiuHao 已提交
111 112 113 114 115 116
    # extract model.tar.gz
    print("Extracting model: %s" % model_path)
    extract(model_path, dir_path)
    os.remove(model_path)

if __name__ == "__main__":
L
LiuHao 已提交
117
    if len(sys.argv) != 2:
L
LiuHao 已提交
118 119 120 121 122 123 124 125 126 127 128
        usage()
        sys.exit(1)
    
    if sys.argv[1] == "dataset":
        pwd = os.path.join(os.path.dirname(__file__), "./")
        download_dataset(pwd)
    elif sys.argv[1] == "model":
        pwd = os.path.join(os.path.dirname(__file__), "./models")
        download_model(pwd)
    else:
        usage()