parallel.py 9.0 KB
Newer Older
S
sserdoubleh 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Parallel class.
"""

from collections import OrderedDict
import os

import numpy as np
from paddle.fluid import core
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph import parallel_helper
import paddle.fluid.framework as framework
from paddle.fluid.layers import collective
from paddle.fluid.dygraph.base import to_variable, no_grad

ParallelStrategy = core.ParallelStrategy


def prepare_context(strategy=None):
    """ Copy codes. """
    if strategy is None:
        strategy = ParallelStrategy()
        strategy.nranks = Env().nranks
        strategy.local_rank = Env().local_rank
        strategy.trainer_endpoints = Env().trainer_endpoints
        strategy.current_endpoint = Env().current_endpoint
    if strategy.nranks < 2:
        return
    assert framework.in_dygraph_mode() is True, \
        "dygraph.parallel.prepare_context should be used with dygrahp mode."
    place = framework._current_expected_place()
    assert place is not None, \
        "dygraph.parallel.prepare_context should be used in fluid.dygraph.guard(place) guard."
    if isinstance(place, core.CUDAPlace):
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    else:
        # TODO(Yancey1989): add Gloo Parallel Context to support CPU parallel computation
        assert ("Only support CUDAPlace for now.")
    parallel_helper._init_parallel_ctx()
    return strategy


class Env(object):
    """ Copy codes. """
    def __init__(self):
        self._nranks = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
        self._local_rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._dev_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        self._trainer_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS",
                                            "").split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")

    @property
    def nranks(self):
        """ Copy codes. """
        return self._nranks

    @property
    def local_rank(self):
        """ Copy codes. """
        return self._local_rank

    @property
    def dev_id(self):
        """ Copy codes. """
        return self._dev_id

    @property
    def current_endpoint(self):
        """ Copy codes. """
        return self._current_endpoint

    @property
    def trainer_endpoints(self):
        """ Copy codes. """
        return self._trainer_endpoints


class DataParallel(layers.Layer):
    """
    Runs the module with data parallelism.

    Currently, DataParallel only supports to run the dynamic graph
    with multi-process. The usage is:
    `python -m paddle.distributed.launch --gpus 2 dynamic_graph_test.py`.
    And the content of `dynamic_graph_test.py` is the code of examples.

    Examples:
        .. code-block:: python

           import numpy as np
           import paddle.fluid as fluid
           import paddle.fluid.dygraph as dygraph
           from paddle.fluid.optimizer import AdamOptimizer
           from paddle.fluid.dygraph.nn import FC
           from paddle.fluid.dygraph.base import to_variable

           place = fluid.CUDAPlace(0)
           with fluid.dygraph.guard(place=place):

               # prepare the data parallel context
               strategy=dygraph.parallel.prepare_context()

               fc_layer = FC("FC", 10, act="softmax")
               adam = fluid.optimizer.AdamOptimizer()

               # make the module become the data parallelism module
               fc_layer = dygraph.parallel.DataParallel(fc_layer, strategy)

               x_data = np.random.random(size=[10, 1]).astype(np.float32)
               data = to_variable(x_data)

               hidden = fc_layer(data)
               avg_loss = fluid.layers.mean(hidden)

               # scale the loss according to the number of trainers.
               avg_loss = fc_layer.scale_loss(avg_loss)

               avg_loss.backward()

               # collect the gradients of trainers.
               fc_layer.apply_collective_grads()

               adam.minimize(avg_loss)
               fc_layer.clear_gradients()

    Args:
        layers(Layer): The module that should be executed by data parallel.
        strategy(ParallelStrategy): The strategy of data parallelism.

    Returns:
        Layer: The data paralleled module.
    """

    def __init__(self, layers, strategy):
        super(DataParallel,
              self).__init__(layers.full_name() + "_data_parallel")

        self._layers = layers
        self._strategy = strategy

    def forward(self, *inputs, **kwargs):
        return self._layers(*inputs, **kwargs)

    def __call__(self, *args, **kwargs):
        # Reimplement __call__ function
        if not self._built:
            self._built = True

        outputs = self.forward(*args, **kwargs)
        return outputs

    def scale_loss(self, loss):
        """
        Scale the loss. In data parallel mode, the loss should be scale with
        the number of trainers. If not in data parallel mode, return the loss
        directly.

        Args:
            loss(Layer): The loss of the current Model.

        Returns:
            Layer: the scaled loss.
        """
        if not self._is_data_parallel_mode():
            return loss

        loss_scale = to_variable(
            np.array([self._strategy.nranks]).astype("float32"))
        loss_scale.stop_gradient = True
        loss = loss / loss_scale
        return loss

    def _coalesce_tensors(self, var_groups):
        from paddle.fluid.layers import nn
        coalesced_grads_and_grad_vars = []
        for group_id, grad_vars in var_groups.items():
            flattened_vars = []
            g_var_shapes = []
            for g_var in grad_vars:
                g_var_shapes.append(g_var.shape)
                flattened_vars.append(
                    nn.reshape(
                        x=g_var, shape=[np.prod(g_var.shape)], inplace=True))
            coalesced_grad = nn.concat(flattened_vars)
            coalesced_grads_and_grad_vars.append(
                [coalesced_grad, grad_vars, g_var_shapes])
        return coalesced_grads_and_grad_vars

    def _split_tensors(self, coalesced_grads_and_grad_vars):
        from paddle.fluid.layers import nn
        for coalesced_grad, origin_grad_vars, grad_shapes in coalesced_grads_and_grad_vars:
            grad_var_len = [np.prod(g_shape) for g_shape in grad_shapes]
            self._helper.main_program.current_block().append_op(
                type='split',
                inputs={'X': coalesced_grad},
                outputs={'Out': origin_grad_vars},
                attrs={'sections': grad_var_len,
                       'axis': 0})
            for g_var, g_shape in zip(origin_grad_vars, grad_shapes):
                nn.reshape(x=g_var, shape=g_shape, inplace=True)

    @no_grad
    def apply_collective_grads(self):
        """
        AllReduce the Parameters' gradient.
        """
        if not self._is_data_parallel_mode():
            return

        grad_var_set = set()
        grad_vars = []
        for param in self._layers.parameters():
            # NOTE(zcd): The grad_ivar maybe no generated.
229 230
            if param.trainable and param._grad_ivar():
                g_var = param._grad_ivar()
S
sserdoubleh 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                grad_vars.append(g_var)
                assert g_var not in grad_var_set
                grad_var_set.add(g_var)

        # FIXME(zcd): the type of the var should be LoDTensor, i.e
        # the gradients should be dense, otherwise, the following
        # logic should be updated.
        # 128 MB as a group
        mega_bytes = 128 * 1024 * 1024
        group_idx = 0
        memory_counter = 0
        grad_var_groups = OrderedDict()
        dtype = grad_vars[0].dtype
        for g_var in grad_vars:
            # Note: the dtype of the same group should be the same.
            bytes = np.prod(g_var.shape) * core.size_of_dtype(g_var.dtype)
            if memory_counter < mega_bytes and dtype == g_var.dtype:
                memory_counter += bytes
            else:
                memory_counter = bytes
                group_idx += 1
            grad_var_groups.setdefault(group_idx, []).append(g_var)

        coalesced_grads_and_vars = self._coalesce_tensors(grad_var_groups)

        for coalesced_grad, g_vars, g_shapes in coalesced_grads_and_vars:
            collective._allreduce(
                coalesced_grad, coalesced_grad, sync_mode=False)

        self._split_tensors(coalesced_grads_and_vars)

    def _is_data_parallel_mode(self):
        return self._strategy.nranks > 1