train.py 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
# -*- coding: utf-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
import os
import random
import math
import contextlib

import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.profiler as profiler
from paddle.fluid.executor import Executor
import reader

import sys
if sys.version[0] == '2':
    reload(sys)
    sys.setdefaultencoding("utf-8")
import os

from args import *
from model import VAE
import logging
import pickle


@contextlib.contextmanager
def profile_context(profile=True):
    if profile:
        with profiler.profiler('All', 'total', 'seq2seq.profile'):
            yield
    else:
        yield


def main():
    args = parse_args()
    print(args)
    num_layers = args.num_layers
    src_vocab_size = args.vocab_size
    tar_vocab_size = args.vocab_size
    batch_size = args.batch_size
    init_scale = args.init_scale
    max_grad_norm = args.max_grad_norm
    hidden_size = args.hidden_size
    attr_init = args.attr_init
    latent_size = 32

    main_program = fluid.Program()
    startup_program = fluid.Program()
    if args.enable_ce:
        fluid.default_main_program().random_seed = 123
        framework.default_startup_program().random_seed = 123

    # Training process
    with fluid.program_guard(main_program, startup_program):
        with fluid.unique_name.guard():
            model = VAE(hidden_size,
                        latent_size,
                        src_vocab_size,
                        tar_vocab_size,
                        batch_size,
                        num_layers=num_layers,
                        init_scale=init_scale,
                        attr_init=attr_init)

            loss, kl_loss, rec_loss = model.build_graph()
            # clone from default main program and use it as the validation program
            main_program = fluid.default_main_program()
            inference_program = fluid.default_main_program().clone(
                for_test=True)

            fluid.clip.set_gradient_clip(
                clip=fluid.clip.GradientClipByGlobalNorm(
                    clip_norm=max_grad_norm))

            learning_rate = fluid.layers.create_global_var(
                name="learning_rate",
                shape=[1],
                value=float(args.learning_rate),
                dtype="float32",
                persistable=True)

            opt_type = args.optimizer
            if opt_type == "sgd":
                optimizer = fluid.optimizer.SGD(learning_rate)
            elif opt_type == "adam":
                optimizer = fluid.optimizer.Adam(learning_rate)
            else:
                print("only support [sgd|adam]")
                raise Exception("opt type not support")

            optimizer.minimize(loss)

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = Executor(place)
    exe.run(startup_program)

    train_program = fluid.compiler.CompiledProgram(main_program)

    dataset_prefix = args.dataset_prefix
    print("begin to load data")
    raw_data = reader.raw_data(dataset_prefix, args.max_len)
    print("finished load data")
    train_data, valid_data, test_data, _ = raw_data

    anneal_r = 1.0 / (args.warm_up * len(train_data) / args.batch_size)

    def prepare_input(batch, kl_weight=1.0, lr=None):
        src_ids, src_mask = batch
        res = {}
        src_ids = src_ids.reshape((src_ids.shape[0], src_ids.shape[1]))
        in_tar = src_ids[:, :-1]
        label_tar = src_ids[:, 1:]

        in_tar = in_tar.reshape((in_tar.shape[0], in_tar.shape[1]))
        label_tar = label_tar.reshape(
            (label_tar.shape[0], label_tar.shape[1], 1))

        res['src'] = src_ids
        res['tar'] = in_tar
        res['label'] = label_tar
        res['src_sequence_length'] = src_mask
        res['tar_sequence_length'] = src_mask - 1
        res['kl_weight'] = np.array([kl_weight]).astype(np.float32)
        if lr is not None:
            res['learning_rate'] = np.array([lr]).astype(np.float32)

        return res, np.sum(src_mask), np.sum(src_mask - 1)

    # get train epoch size
    def eval(data):
        eval_data_iter = reader.get_data_iter(data, batch_size, mode='eval')
        total_loss = 0.0
        word_count = 0.0
        batch_count = 0.0
        for batch_id, batch in enumerate(eval_data_iter):
            input_data_feed, src_word_num, dec_word_sum = prepare_input(batch)
            fetch_outs = exe.run(inference_program,
                                 feed=input_data_feed,
                                 fetch_list=[loss.name],
                                 use_program_cache=False)

            cost_train = np.array(fetch_outs[0])

            total_loss += cost_train * batch_size
            word_count += dec_word_sum
            batch_count += batch_size

        nll = total_loss / batch_count
        ppl = np.exp(total_loss / word_count)

        return nll, ppl

    def train():
        ce_time = []
        ce_ppl = []
        max_epoch = args.max_epoch
        kl_w = args.kl_start
        lr_w = args.learning_rate
        best_valid_nll = 1e100  # +inf
        best_epoch_id = -1
        decay_cnt = 0
        max_decay = args.max_decay
        decay_factor = 0.5
        decay_ts = 2
        steps_not_improved = 0
        for epoch_id in range(max_epoch):
            start_time = time.time()
            if args.enable_ce:
                train_data_iter = reader.get_data_iter(
                    train_data,
                    batch_size,
                    args.sort_cache,
                    args.cache_num,
                    enable_ce=True)
            else:
                train_data_iter = reader.get_data_iter(
                    train_data, batch_size, args.sort_cache, args.cache_num)

            total_loss = 0
            total_rec_loss = 0
            total_kl_loss = 0
            word_count = 0.0
            batch_count = 0.0
            batch_times = []
            for batch_id, batch in enumerate(train_data_iter):
1024的传说's avatar
1024的传说 已提交
207
                batch_start_time = time.time()
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
                kl_w = min(1.0, kl_w + anneal_r)
                kl_weight = kl_w
                input_data_feed, src_word_num, dec_word_sum = prepare_input(
                    batch, kl_weight, lr_w)
                fetch_outs = exe.run(
                    program=train_program,
                    feed=input_data_feed,
                    fetch_list=[loss.name, kl_loss.name, rec_loss.name],
                    use_program_cache=False)

                cost_train = np.array(fetch_outs[0])
                kl_cost_train = np.array(fetch_outs[1])
                rec_cost_train = np.array(fetch_outs[2])

                total_loss += cost_train * batch_size
                total_rec_loss += rec_cost_train * batch_size
                total_kl_loss += kl_cost_train * batch_size
                word_count += dec_word_sum
                batch_count += batch_size
                batch_end_time = time.time()
                batch_time = batch_end_time - batch_start_time
                batch_times.append(batch_time)

                if batch_id > 0 and batch_id % 200 == 0:
                    print("-- Epoch:[%d]; Batch:[%d]; Time: %.4f s; "
                          "kl_weight: %.4f; kl_loss: %.4f; rec_loss: %.4f; "
                          "nll: %.4f; ppl: %.4f" %
                          (epoch_id, batch_id, batch_time, kl_w, total_kl_loss /
                           batch_count, total_rec_loss / batch_count, total_loss
                           / batch_count, np.exp(total_loss / word_count)))
                    ce_ppl.append(np.exp(total_loss / word_count))

            end_time = time.time()
            epoch_time = end_time - start_time
            ce_time.append(epoch_time)
            print(
                "\nTrain epoch:[%d]; Epoch Time: %.4f; avg_time: %.4f s/step\n"
                % (epoch_id, epoch_time, sum(batch_times) / len(batch_times)))

            val_nll, val_ppl = eval(valid_data)
            print("dev ppl", val_ppl)
            test_nll, test_ppl = eval(test_data)
            print("test ppl", test_ppl)

            if val_nll < best_valid_nll:
                best_valid_nll = val_nll
                steps_not_improved = 0
                best_nll = test_nll
                best_ppl = test_ppl
                best_epoch_id = epoch_id
                dir_name = os.path.join(args.model_path,
                                        "epoch_" + str(best_epoch_id))
                print("save model {}".format(dir_name))
                fluid.io.save_params(exe, dir_name, main_program)
            else:
                steps_not_improved += 1
                if steps_not_improved == decay_ts:
                    old_lr = lr_w
                    lr_w *= decay_factor
                    steps_not_improved = 0
                    new_lr = lr_w

                    print('-----\nchange lr, old lr: %f, new lr: %f\n-----' %
                          (old_lr, new_lr))

                    dir_name = args.model_path + "/epoch_" + str(best_epoch_id)
                    fluid.io.load_params(exe, dir_name)

                    decay_cnt += 1
                    if decay_cnt == max_decay:
                        break

        print('\nbest testing nll: %.4f, best testing ppl %.4f\n' %
              (best_nll, best_ppl))

1024的传说's avatar
1024的传说 已提交
283 284 285 286 287 288 289 290 291 292 293 294
        if args.enable_ce:
            card_num = get_cards()
            _ppl = 0
            _time = 0
            try:
                _time = ce_time[-1]
                _ppl = ce_ppl[-1]
            except:
                print("ce info error")
            print("kpis\ttrain_duration_card%s\t%s" % (card_num, _time))
            print("kpis\ttrain_ppl_card%s\t%f" % (card_num, _ppl))

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    with profile_context(args.profile):
        train()


def get_cards():
    num = 0
    cards = os.environ.get('CUDA_VISIBLE_DEVICES', '')
    if cards != '':
        num = len(cards.split(","))
    return num


def check_version():
    """
    Log error and exit when the installed version of paddlepaddle is
    not satisfied.
    """
    err = "PaddlePaddle version 1.6 or higher is required, " \
          "or a suitable develop version is satisfied as well. \n" \
          "Please make sure the version is good with your code." \

    try:
        fluid.require_version('1.6.0')
    except Exception as e:
        logger.error(err)
        sys.exit(1)


if __name__ == '__main__':
    check_version()
    main()