train.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os


def set_paddle_flags(flags):
    for key, value in flags.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


set_paddle_flags({
    'FLAGS_conv_workspace_size_limit': 500,
    'FLAGS_eager_delete_tensor_gb': 0,  # enable gc
    'FLAGS_memory_fraction_of_eager_deletion': 1,
    'FLAGS_fraction_of_gpu_memory_to_use': 0.98
})

import sys
import numpy as np
import time
import shutil
import collections
import paddle
import paddle.fluid as fluid
import reader
import models.model_builder as model_builder
import models.resnet as resnet
import checkpoint as checkpoint
from config import cfg
from utility import parse_args, print_arguments, SmoothedValue, TrainingStats, now_time, check_gpu
num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))


def get_device_num():
    # NOTE(zcd): for multi-processe training, each process use one GPU card.
    if num_trainers > 1:
        return 1
    return fluid.core.get_cuda_device_count()


def train():
    learning_rate = cfg.learning_rate
    image_shape = [3, cfg.TRAIN.max_size, cfg.TRAIN.max_size]

    devices_num = get_device_num()
    total_batch_size = devices_num * cfg.TRAIN.im_per_batch

    use_random = True
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():
            model = model_builder.RRPN(
                add_conv_body_func=resnet.ResNet(),
                add_roi_box_head_func=resnet.ResNetC5(),
                use_pyreader=cfg.use_pyreader,
                use_random=use_random)
            model.build_model(image_shape)
            losses, keys, rpn_rois = model.loss()
            loss = losses[0]
            fetch_list = losses

            boundaries = cfg.lr_steps
            gamma = cfg.lr_gamma
            step_num = len(cfg.lr_steps)
            values = [learning_rate * (gamma**i) for i in range(step_num + 1)]
            start_lr = learning_rate * cfg.start_factor
            lr = fluid.layers.piecewise_decay(boundaries, values)
            lr = fluid.layers.linear_lr_warmup(lr, cfg.warm_up_iter, start_lr,
                                               learning_rate)
            optimizer = fluid.optimizer.Momentum(
                learning_rate=lr,
                regularization=fluid.regularizer.L2Decay(cfg.weight_decay),
                momentum=cfg.momentum)
            optimizer.minimize(loss)
            fetch_list = fetch_list + [lr]

            for var in fetch_list:
                var.persistable = True
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_iteration_per_drop_scope = 1
    exe.run(startup_prog)

    if cfg.pretrained_model:
        checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrained_model)
    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    shuffle = True
    shuffle_seed = None
    if num_trainers > 1:
        shuffle_seed = 1
    if cfg.use_pyreader:
        train_reader = reader.train(
            batch_size=cfg.TRAIN.im_per_batch,
            total_batch_size=total_batch_size,
            padding_total=cfg.TRAIN.padding_minibatch,
            shuffle=shuffle,
            shuffle_seed=shuffle_seed)
        if num_trainers > 1:
            assert shuffle_seed is not None, \
                "If num_trainers > 1, the shuffle_seed must be set, because " \
                "the order of batch data generated by reader " \
                "must be the same in the respective processes."
            # NOTE: the order of batch data generated by batch_reader
            # must be the same in the respective processes.
            if num_trainers > 1:
                train_reader = fluid.contrib.reader.distributed_batch_reader(
                    train_reader)
        py_reader = model.py_reader
        py_reader.decorate_paddle_reader(train_reader)
    else:
        if num_trainers > 1: shuffle = False
        train_reader = reader.train(
            batch_size=total_batch_size, shuffle=shuffle)
        feeder = fluid.DataFeeder(place=place, feed_list=model.feeds())

    def train_loop_pyreader():
        py_reader.start()
        train_stats = TrainingStats(cfg.log_window, keys)
        try:
            start_time = time.time()
            prev_start_time = start_time
            for iter_id in range(cfg.max_iter):
                prev_start_time = start_time
                start_time = time.time()
                outs = exe.run(compiled_train_prog,
                               fetch_list=[v.name for v in fetch_list])
                stats = {k: np.array(v).mean() for k, v in zip(keys, outs[:-1])}
                train_stats.update(stats)
                logs = train_stats.log()
                if iter_id % 10 == 0:
                    strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
                        now_time(), iter_id,
                        np.mean(outs[-1]), logs, start_time - prev_start_time)
                    print(strs)
                sys.stdout.flush()
                if (iter_id) % cfg.TRAIN.snapshot_iter == 0 and iter_id != 0:
                    save_name = "{}".format(iter_id)
                    checkpoint.save(exe, train_prog,
                                    os.path.join(cfg.model_save_dir, save_name))
                if (iter_id) == cfg.max_iter:
                    checkpoint.save(
                        exe, train_prog,
                        os.path.join(cfg.model_save_dir, "model_final"))
                    break
            end_time = time.time()
            total_time = end_time - start_time
            last_loss = np.array(outs[0]).mean()
        except (StopIteration, fluid.core.EOFException):
            py_reader.reset()

    def train_loop():
        start_time = time.time()
        prev_start_time = start_time
        start = start_time
        train_stats = TrainingStats(cfg.log_window, keys)
        for iter_id, data in enumerate(train_reader()):
            prev_start_time = start_time
            start_time = time.time()
            if data[0][1].shape[0] == 0:
                continue

            outs = exe.run(compiled_train_prog,
                           fetch_list=[v.name for v in fetch_list],
                           feed=feeder.feed(data))
            stats = {k: np.array(v).mean() for k, v in zip(keys, outs[:-1])}
            train_stats.update(stats)
            logs = train_stats.log()
            if iter_id % 10 == 0:
                strs = '{}, iter: {}, lr: {:.5f}, {}, time: {:.3f}'.format(
                    now_time(), iter_id,
                    np.mean(outs[-1]), logs, start_time - prev_start_time)
                print(strs)
            sys.stdout.flush()
            if (iter_id + 1) % cfg.TRAIN.snapshot_iter == 0 and iter_id != 0:
                save_name = "{}".format(iter_id + 1)
                checkpoint.save(exe, train_prog,
                                os.path.join(cfg.model_save_dir, save_name))
            if (iter_id + 1) == cfg.max_iter:
                checkpoint.save(exe, train_prog,
                                os.path.join(cfg.model_save_dir, "model_final"))
                break

        end_time = time.time()
        total_time = end_time - start_time
        last_loss = np.array(outs[0]).mean()

    if cfg.use_pyreader:
        train_loop_pyreader()
    else:
        train_loop()


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)
    check_gpu(args.use_gpu)
    train()