data_utils.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Based on:
# --------------------------------------------------------
# Detectron
# Copyright (c) 2017-present, Facebook, Inc.
# Licensed under the Apache License, Version 2.0;
# Written by Ross Girshick
# --------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import cv2
import numpy as np
from config import cfg
import os
from PIL import Image


class DatasetPath(object):
    def __init__(self, mode, dataset_name):
        self.mode = mode
        self.data_dir = dataset_name

    def get_data_dir(self):
        if self.mode == 'train':
            return os.path.join(self.data_dir, 'ch4_training_images')
        elif self.mode == 'val':
            return os.path.join(self.data_dir, 'ch4_test_images')

    def get_file_list(self):
        if self.mode == 'train':
            return os.path.join(self.data_dir,
                                'ch4_training_localization_transcription_gt')
        elif self.mode == 'val':
            return os.path.join(self.data_dir,
                                'ch4_test_localization_transcription_gt')


def get_image_blob(roidb, mode):
    """Builds an input blob from the images in the roidb at the specified
    scales.
    """
    if mode == 'train' or mode == 'val':
        with open(roidb['image'], 'rb') as f:
            data = f.read()
        data = np.frombuffer(data, dtype='uint8')
        img = cv2.imdecode(data, 1)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        gt_boxes = roidb['boxes']
        gt_label = roidb['gt_classes']
        # resize
        if mode == 'train':
            img, im_scale = _resize(img, target_size=800, max_size=1333)
            need_gt_boxes = gt_boxes.copy()
            need_gt_boxes[:, :4] *= im_scale
            img, need_gt_boxes, need_gt_label = _rotation(
                img, need_gt_boxes, gt_label, prob=1.0, gt_margin=1.4)
        else:
            img, im_scale = _resize(img, target_size=1000, max_size=1778)
            need_gt_boxes = gt_boxes
            need_gt_label = gt_label
        img = img.astype(np.float32, copy=False)
        img = img / 255.0
        mean = np.array(cfg.pixel_means)[np.newaxis, np.newaxis, :]
        std = np.array(cfg.pixel_std)[np.newaxis, np.newaxis, :]
        img -= mean
        img /= std
        img = img.transpose((2, 0, 1))
        return img, im_scale, need_gt_boxes, need_gt_label


def _get_size_scale(w, h, min_size, max_size=None):
    size = min_size
    scale = 1.0
    if max_size is not None:
        min_original_size = float(min((w, h)))
        max_original_size = float(max((w, h)))
        if max_original_size / min_original_size * size > max_size:
            size = int(round(max_size * min_original_size / max_original_size))
    if (w <= h and w == size) or (h <= w and h == size):
        return (h, w), scale
    if w < h:
        ow = size
        oh = int(size * h / w)
        scale = size / w
    else:
        oh = size
        ow = int(size * w / h)
        scale = size / h
    scale = ow / w
    return (oh, ow), scale


def _resize(im, target_size=800, max_size=1333):
    if not isinstance(im, np.ndarray):
        raise TypeError("{}: image type is not numpy.")
    if len(im.shape) != 3:
        raise ImageError('{}: image is not 3-dimensional.')
    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    selected_size = target_size
    if float(im_size_min) == 0:
        raise ZeroDivisionError('min size of image is 0')
    if max_size != 0:
        im_scale = float(selected_size) / float(im_size_min)
        # Prevent the biggest axis from being more than max_size
        if np.round(im_scale * im_size_max) > max_size:
            im_scale = float(max_size) / float(im_size_max)
        im_scale_x = im_scale
        im_scale_y = im_scale

        resize_w = np.round(im_scale_x * float(im_shape[1]))
        resize_h = np.round(im_scale_y * float(im_shape[0]))
        im_info = [resize_h, resize_w, im_scale]
    else:
        im_scale_x = float(selected_size) / float(im_shape[1])
        im_scale_y = float(selected_size) / float(im_shape[0])

        resize_w = selected_size
        resize_h = selected_size

    im = Image.fromarray(im)
    im = im.resize((int(resize_w), int(resize_h)), 2)
    im = np.array(im)
    return im, im_scale_x


def _rotation(image,
              gt_boxes,
              gt_label,
              prob,
              fixed_angle=-1,
              r_range=(360, 0),
              gt_margin=1.4):
    rotate_range = r_range[0]
    shift = r_range[1]
    angle = np.array([np.max([0, fixed_angle])])
    if np.random.rand() <= prob:
        angle = np.array(
            np.random.rand(1) * rotate_range - shift, dtype=np.int16)
    '''
    rotate image
    '''
    image = np.array(image)
    (h, w) = image.shape[:2]
    scale = 1.0
    # set the rotation center
    center = (w / 2, h / 2)
    # anti-clockwise angle in the function
    M = cv2.getRotationMatrix2D(center, angle, scale)
    image = cv2.warpAffine(image, M, (w, h))
    # back to PIL image
    im_width, im_height = w, h
    '''
    rotate boxes
    '''
    need_gt_boxes = gt_boxes.copy()
    origin_gt_boxes = need_gt_boxes
    rotated_gt_boxes = np.empty((len(need_gt_boxes), 5), dtype=np.float32)
    # anti-clockwise to clockwise arc
    cos_cita = np.cos(np.pi / 180 * angle)
    sin_cita = np.sin(np.pi / 180 * angle)
    # clockwise matrix
    rotation_matrix = np.array([[cos_cita, sin_cita], [-sin_cita, cos_cita]])
    pts_ctr = origin_gt_boxes[:, 0:2]
    pts_ctr = pts_ctr - np.tile((im_width / 2, im_height / 2),
                                (gt_boxes.shape[0], 1))
    pts_ctr = np.array(np.dot(pts_ctr, rotation_matrix), dtype=np.int16)
    pts_ctr = np.squeeze(
        pts_ctr, axis=-1) + np.tile((im_width / 2, im_height / 2),
                                    (gt_boxes.shape[0], 1))
    origin_gt_boxes[:, 0:2] = pts_ctr
    len_of_gt = len(origin_gt_boxes)
    # rectificate the angle in the range of [-45, 45]
    for idx in range(len_of_gt):
        ori_angle = origin_gt_boxes[idx, 4]
        height = origin_gt_boxes[idx, 3]
        width = origin_gt_boxes[idx, 2]
        # step 1: normalize gt (-45,135)
        if width < height:
            ori_angle += 90
            width, height = height, width
        # step 2: rotate (-45,495)
        rotated_angle = ori_angle + angle
        # step 3: normalize rotated_angle (-45,135)
        while rotated_angle > 135:
            rotated_angle = rotated_angle - 180
        rotated_gt_boxes[idx, 0] = origin_gt_boxes[idx, 0]
        rotated_gt_boxes[idx, 1] = origin_gt_boxes[idx, 1]
        rotated_gt_boxes[idx, 3] = height * gt_margin
        rotated_gt_boxes[idx, 2] = width * gt_margin
        rotated_gt_boxes[idx, 4] = rotated_angle
    x_inbound = np.logical_and(rotated_gt_boxes[:, 0] >= 0,
                               rotated_gt_boxes[:, 0] < im_width)
    y_inbound = np.logical_and(rotated_gt_boxes[:, 1] >= 0,
                               rotated_gt_boxes[:, 1] < im_height)
    inbound = np.logical_and(x_inbound, y_inbound)
    need_gt_boxes = rotated_gt_boxes[inbound]
    need_gt_label = gt_label.copy()
    need_gt_label = need_gt_label[inbound]
    return image, need_gt_boxes, need_gt_label


def prep_im_for_blob(im, pixel_means, target_size, max_size):
    """Prepare an image for use as a network input blob. Specially:
      - Subtract per-channel pixel mean
      - Convert to float32
      - Rescale to each of the specified target size (capped at max_size)
    Returns a list of transformed images, one for each target size. Also returns
    the scale factors that were used to compute each returned image.
    """
    im = im.astype(np.float32, copy=False)
    im -= pixel_means

    im_shape = im.shape
    im_size_min = np.min(im_shape[0:2])
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(target_size) / float(im_size_min)
    # Prevent the biggest axis from being more than max_size
    if np.round(im_scale * im_size_max) > max_size:
        im_scale = float(max_size) / float(im_size_max)
    im = cv2.resize(
        im,
        None,
        None,
        fx=im_scale,
        fy=im_scale,
        interpolation=cv2.INTER_LINEAR)
    im_height, im_width, channel = im.shape
    channel_swap = (2, 0, 1)  #(batch, channel, height, width)
    im = im.transpose(channel_swap)
    return im, im_scale