crnn_ctc_model.py 8.0 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
W
wanghaoshuang 已提交
17
import paddle.fluid as fluid
18 19
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import math
20
import six
W
wanghaoshuang 已提交
21 22 23 24 25 26 27 28


def conv_bn_pool(input,
                 group,
                 out_ch,
                 act="relu",
                 param=None,
                 bias=None,
W
wanghaoshuang 已提交
29
                 param_0=None,
30
                 is_test=False,
31 32
                 pooling=True,
                 use_cudnn=False):
W
wanghaoshuang 已提交
33
    tmp = input
34
    for i in six.moves.xrange(group):
W
wanghaoshuang 已提交
35 36 37 38 39 40 41
        tmp = fluid.layers.conv2d(
            input=tmp,
            num_filters=out_ch[i],
            filter_size=3,
            padding=1,
            param_attr=param if param_0 is None else param_0,
            act=None,  # LinearActivation
42
            use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
43
        tmp = fluid.layers.batch_norm(
W
wanghaoshuang 已提交
44 45 46 47 48
            input=tmp,
            act=act,
            param_attr=param,
            bias_attr=bias,
            is_test=is_test)
49 50 51 52 53 54
    if pooling:
        tmp = fluid.layers.pool2d(
            input=tmp,
            pool_size=2,
            pool_type='max',
            pool_stride=2,
55
            use_cudnn=use_cudnn,
56
            ceil_mode=True)
W
wanghaoshuang 已提交
57 58 59 60

    return tmp


61 62 63 64 65
def ocr_convs(input,
              regularizer=None,
              gradient_clip=None,
              is_test=False,
              use_cudnn=False):
W
wanghaoshuang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
    b = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.0))
    w0 = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.0005))
    w1 = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.01))
    tmp = input
W
wanghaoshuang 已提交
79
    tmp = conv_bn_pool(
80 81 82 83 84 85 86
        tmp,
        2, [16, 16],
        param=w1,
        bias=b,
        param_0=w0,
        is_test=is_test,
        use_cudnn=use_cudnn)
87

88
    tmp = conv_bn_pool(
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        tmp,
        2, [32, 32],
        param=w1,
        bias=b,
        is_test=is_test,
        use_cudnn=use_cudnn)
    tmp = conv_bn_pool(
        tmp,
        2, [64, 64],
        param=w1,
        bias=b,
        is_test=is_test,
        use_cudnn=use_cudnn)
    tmp = conv_bn_pool(
        tmp,
        2, [128, 128],
        param=w1,
        bias=b,
        is_test=is_test,
        pooling=False,
        use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
110 111 112 113 114 115 116
    return tmp


def encoder_net(images,
                num_classes,
                rnn_hidden_size=200,
                regularizer=None,
W
wanghaoshuang 已提交
117
                gradient_clip=None,
118 119
                is_test=False,
                use_cudnn=False):
W
wanghaoshuang 已提交
120
    conv_features = ocr_convs(
W
wanghaoshuang 已提交
121 122 123
        images,
        regularizer=regularizer,
        gradient_clip=gradient_clip,
124 125
        is_test=is_test,
        use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    sliced_feature = fluid.layers.im2sequence(
        input=conv_features,
        stride=[1, 1],
        filter_size=[conv_features.shape[2], 1])

    para_attr = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.02))
    bias_attr = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.02),
        learning_rate=2.0)
    bias_attr_nobias = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.02))

    fc_1 = fluid.layers.fc(input=sliced_feature,
                           size=rnn_hidden_size * 3,
                           param_attr=para_attr,
                           bias_attr=bias_attr_nobias)
    fc_2 = fluid.layers.fc(input=sliced_feature,
                           size=rnn_hidden_size * 3,
                           param_attr=para_attr,
                           bias_attr=bias_attr_nobias)

    gru_forward = fluid.layers.dynamic_gru(
        input=fc_1,
        size=rnn_hidden_size,
        param_attr=para_attr,
        bias_attr=bias_attr,
        candidate_activation='relu')
    gru_backward = fluid.layers.dynamic_gru(
        input=fc_2,
        size=rnn_hidden_size,
        is_reverse=True,
        param_attr=para_attr,
        bias_attr=bias_attr,
        candidate_activation='relu')

    w_attr = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.02))
    b_attr = fluid.ParamAttr(
        regularizer=regularizer,
        gradient_clip=gradient_clip,
        initializer=fluid.initializer.Normal(0.0, 0.0))

    fc_out = fluid.layers.fc(input=[gru_forward, gru_backward],
                             size=num_classes + 1,
                             param_attr=w_attr,
                             bias_attr=b_attr)
W
wanghaoshuang 已提交
181

W
wanghaoshuang 已提交
182 183 184
    return fc_out


185
def ctc_train_net(args, data_shape, num_classes):
W
whs 已提交
186 187 188
    L2_RATE = args.l2decay
    LR = args.lr
    MOMENTUM = args.momentum
189
    learning_rate_decay = None
190
    regularizer = fluid.regularizer.L2Decay(L2_RATE)
W
wanghaoshuang 已提交
191

192 193 194
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(
        name='label', shape=[1], dtype='int32', lod_level=1)
195 196 197 198 199
    fc_out = encoder_net(
        images,
        num_classes,
        regularizer=regularizer,
        use_cudnn=True if args.use_gpu else False)
200 201 202 203 204
    cost = fluid.layers.warpctc(
        input=fc_out, label=label, blank=num_classes, norm_by_times=True)
    sum_cost = fluid.layers.reduce_sum(cost)
    decoded_out = fluid.layers.ctc_greedy_decoder(
        input=fc_out, blank=num_classes)
W
wanghaoshuang 已提交
205 206 207
    casted_label = fluid.layers.cast(x=label, dtype='int64')
    error_evaluator = fluid.evaluator.EditDistance(
        input=decoded_out, label=casted_label)
W
wanghaoshuang 已提交
208
    inference_program = fluid.default_main_program().clone(for_test=True)
209 210
    if learning_rate_decay == "piecewise_decay":
        learning_rate = fluid.layers.piecewise_decay([
211
            args.total_step // 4, args.total_step // 2, args.total_step * 3 // 4
212 213 214 215 216 217
        ], [LR, LR * 0.1, LR * 0.01, LR * 0.001])
    else:
        learning_rate = LR

    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate, momentum=MOMENTUM)
W
wanghaoshuang 已提交
218
    _, params_grads = optimizer.minimize(sum_cost)
219 220 221 222 223 224
    model_average = None
    if args.average_window > 0:
        model_average = fluid.optimizer.ModelAverage(
            args.average_window,
            min_average_window=args.min_average_window,
            max_average_window=args.max_average_window)
225
    return sum_cost, error_evaluator, inference_program, model_average
W
wanghaoshuang 已提交
226 227


W
whs 已提交
228
def ctc_infer(images, num_classes, use_cudnn=True):
229
    fc_out = encoder_net(images, num_classes, is_test=True, use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
230 231 232
    return fluid.layers.ctc_greedy_decoder(input=fc_out, blank=num_classes)


W
whs 已提交
233
def ctc_eval(data_shape, num_classes, use_cudnn=True):
234 235 236
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(
        name='label', shape=[1], dtype='int32', lod_level=1)
237
    fc_out = encoder_net(images, num_classes, is_test=True, use_cudnn=use_cudnn)
W
wanghaoshuang 已提交
238 239 240 241 242 243 244 245
    decoded_out = fluid.layers.ctc_greedy_decoder(
        input=fc_out, blank=num_classes)

    casted_label = fluid.layers.cast(x=label, dtype='int64')
    error_evaluator = fluid.evaluator.EditDistance(
        input=decoded_out, label=casted_label)

    cost = fluid.layers.warpctc(
246
        input=fc_out, label=label, blank=num_classes, norm_by_times=True)
W
wanghaoshuang 已提交
247 248

    return error_evaluator, cost