train.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2018-present, Baidu, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""Functions for training."""

import os
18
import sys
19 20 21 22 23 24 25 26 27 28 29 30 31 32
import numpy as np
import cv2
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import argparse
import functools

from lib import pose_resnet
from utils.utility import *

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
33 34 35 36 37 38 39 40 41 42 43
add_arg('batch_size',       int,   128,                          "Minibatch size totally.")
add_arg('dataset',          str,   'mpii',                       "Dataset, valid value: mpii, coco")
add_arg('use_gpu',          bool,  True,                         "Whether to use GPU or not.")
add_arg('num_epochs',       int,   140,                          "Number of epochs.")
add_arg('total_images',     int,   144406,                       "Training image number.")
add_arg('kp_dim',           int,   16,                           "Class number.")
add_arg('model_save_dir',   str,   "output",                     "Model save directory")
add_arg('pretrained_model', str,   "pretrained/resnet_50/115",   "Whether to use pretrained model.")
add_arg('checkpoint',       str,   None,                         "Whether to resume checkpoint.")
add_arg('lr',               float, 0.001,                        "Set learning rate.")
add_arg('lr_strategy',      str,   "piecewise_decay",            "Set the learning rate decay strategy.")
u010070587's avatar
u010070587 已提交
44
add_arg('enable_ce',        bool,  False,                        "If set True, enable continuous evaluation job.")
45 46
# yapf: enable

u010070587's avatar
u010070587 已提交
47

48 49 50 51 52 53 54 55 56 57
def optimizer_setting(args, params):
    lr_drop_ratio = 0.1

    ls = params["learning_strategy"]

    if ls["name"] == "piecewise_decay":
        total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)

58
        ls['epochs'] = [90, 120]
59 60 61 62 63 64 65 66 67
        print('=> LR will be dropped at the epoch of {}'.format(ls['epochs']))

        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (lr_drop_ratio**i) for i in range(len(bd) + 1)]

        # AdamOptimizer
        optimizer = paddle.fluid.optimizer.AdamOptimizer(
u010070587's avatar
u010070587 已提交
68 69
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr))
70 71 72 73 74 75 76 77 78
    else:
        lr = params["lr"]
        optimizer = fluid.optimizer.Momentum(
            learning_rate=lr,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(0.0005))

    return optimizer

79 80 81 82 83 84

def print_immediately(s):
    print(s)
    sys.stdout.flush()


85 86 87 88 89 90
def train(args):
    if args.dataset == 'coco':
        import lib.coco_reader as reader
        IMAGE_SIZE = [288, 384]
        HEATMAP_SIZE = [72, 96]
        args.kp_dim = 17
u010070587's avatar
u010070587 已提交
91
        args.total_images = 144406  # 149813
92 93 94
    elif args.dataset == 'mpii':
        import lib.mpii_reader as reader
        IMAGE_SIZE = [384, 384]
u010070587's avatar
u010070587 已提交
95
        HEATMAP_SIZE = [96, 96]
96 97 98
        args.kp_dim = 16
        args.total_images = 22246
    else:
u010070587's avatar
u010070587 已提交
99 100
        raise ValueError('The dataset {} is not supported yet.'.format(
            args.dataset))
101 102 103 104

    print_arguments(args)

    # Image and target
u010070587's avatar
u010070587 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117
    image = layers.data(
        name='image', shape=[3, IMAGE_SIZE[1], IMAGE_SIZE[0]], dtype='float32')
    target = layers.data(
        name='target',
        shape=[args.kp_dim, HEATMAP_SIZE[1], HEATMAP_SIZE[0]],
        dtype='float32')
    target_weight = layers.data(
        name='target_weight', shape=[args.kp_dim, 1], dtype='float32')

    # used for ce
    if args.enable_ce:
        fluid.default_startup_program().random_seed = 90
        fluid.default_main_program().random_seed = 90
118 119 120 121 122

    # Build model
    model = pose_resnet.ResNet(layers=50, kps_num=args.kp_dim)

    # Output
u010070587's avatar
u010070587 已提交
123 124 125
    loss, output = model.net(input=image,
                             target=target,
                             target_weight=target_weight)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

    # Parameters from model and arguments
    params = {}
    params["total_images"] = args.total_images
    params["lr"] = args.lr
    params["num_epochs"] = args.num_epochs
    params["learning_strategy"] = {}
    params["learning_strategy"]["batch_size"] = args.batch_size
    params["learning_strategy"]["name"] = args.lr_strategy

    # Initialize optimizer
    optimizer = optimizer_setting(args, params)
    optimizer.minimize(loss)

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if args.pretrained_model:
u010070587's avatar
u010070587 已提交
145

146
        def if_exist(var):
u010070587's avatar
u010070587 已提交
147 148
            exist_flag = os.path.exists(
                os.path.join(args.pretrained_model, var.name))
149
            return exist_flag
u010070587's avatar
u010070587 已提交
150

151 152 153 154 155 156 157
        fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)

    if args.checkpoint is not None:
        fluid.io.load_persistables(exe, args.checkpoint)

    # Dataloader
    train_reader = paddle.batch(reader.train(), batch_size=args.batch_size)
u010070587's avatar
u010070587 已提交
158 159
    feeder = fluid.DataFeeder(
        place=place, feed_list=[image, target, target_weight])
160 161 162 163 164 165 166

    train_exe = fluid.ParallelExecutor(
        use_cuda=True if args.use_gpu else False, loss_name=loss.name)
    fetch_list = [image.name, loss.name, output.name]

    for pass_id in range(params["num_epochs"]):
        for batch_id, data in enumerate(train_reader()):
u010070587's avatar
u010070587 已提交
167 168
            current_lr = np.array(paddle.fluid.global_scope().find_var(
                'learning_rate').get_tensor())
169 170

            input_image, loss, out_heatmaps = train_exe.run(
u010070587's avatar
u010070587 已提交
171
                fetch_list, feed=feeder.feed(data))
172 173 174

            loss = np.mean(np.array(loss))

175
            print_immediately('Epoch [{:4d}/{:3d}] LR: {:.10f} '
u010070587's avatar
u010070587 已提交
176 177
                              'Loss = {:.5f}'.format(batch_id, pass_id,
                                                     current_lr[0], loss))
178 179

            if batch_id % 10 == 0:
u010070587's avatar
u010070587 已提交
180 181 182 183 184 185 186 187 188
                save_batch_heatmaps(
                    input_image,
                    out_heatmaps,
                    file_name='visualization@train.jpg',
                    normalize=True)

        model_path = os.path.join(
            args.model_save_dir + '/' + 'simplebase-{}'.format(args.dataset),
            str(pass_id))
189 190 191 192
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
        fluid.io.save_persistables(exe, model_path)

u010070587's avatar
u010070587 已提交
193 194 195 196 197 198
    # used for ce
    if args.enable_ce:
        device_num = fluid.core.get_cuda_device_count() if args.use_gpu else 1
        print("kpis\t{}_train_cost_card{}\t{:.5f}".format(args.dataset,
                                                          device_num, loss))

199 200 201

if __name__ == '__main__':
    args = parser.parse_args()
L
LielinJiang 已提交
202
    check_cuda(args.use_gpu)
203
    train(args)