lr_scheduler.py 6.9 KB
Newer Older
E
Exception-star 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
# -*- coding: utf-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
import math


class Lr(object):
    """
    示例:使用poly策略, 有热身,
     lr_scheduler = Lr(lr_policy='poly', base_lr=0.003, epoch_nums=200, step_per_epoch=20,
                      warm_up=True, warmup_epoch=11)
     lr = lr_scheduler.get_lr()

    示例:使用cosine策略, 有热身,
    lr_scheduler = Lr(lr_policy='cosine', base_lr=0.003, epoch_nums=200, step_per_epoch=20,
                      warm_up=True, warmup_epoch=11)
    lr = lr_scheduler.get_lr()

    示例:使用piecewise策略, 有热身,必须设置边界(decay_epoch list), gamma系数默认0.1
    lr_scheduler = Lr(lr_policy='piecewise', base_lr=0.003, epoch_nums=200, step_per_epoch=20,
                      warm_up=True, warmup_epoch=11, decay_epoch=[50], gamma=0.1)
    lr = lr_scheduler.get_lr()
    """
    def __init__(self, lr_policy, base_lr, epoch_nums, step_per_epoch,
                 power=0.9, end_lr=0.0, gamma=0.1, decay_epoch=[],
                 warm_up=False, warmup_epoch=0):
        support_lr_policy = ['poly', 'piecewise', 'cosine']
        assert lr_policy in support_lr_policy, "Only support poly, piecewise, cosine"
        self.lr_policy = lr_policy  # 学习率衰减策略 : str(`cosine`, `poly`, `piecewise`)

        assert base_lr >= 0, "Start learning rate should greater than 0"
        self.base_lr = base_lr  # 基础学习率: float

        assert end_lr >= 0, "End learning rate should greater than 0"
        self.end_lr = end_lr  # 学习率终点: float

        assert epoch_nums, "epoch_nums should greater than 0"
        assert step_per_epoch, "step_per_epoch should greater than 0"

        self.epoch_nums = epoch_nums  # epoch数: int
        self.step_per_epoch = step_per_epoch  # 每个epoch的迭代数: int
        self.total_step = epoch_nums * step_per_epoch  # 总的迭代数 :auto
        self.power = power  # 指数: float
        self.gamma = gamma  # 分段衰减的系数: float
        self.decay_epoch = decay_epoch  # 分段衰减的epoch: list
        if self.lr_policy == 'piecewise':
            assert len(decay_epoch) >= 1, "use piecewise policy, should set decay_epoch list"
        self.warm_up = warm_up  # 是否热身:bool
        if self.warm_up:
            assert warmup_epoch, "warmup_epoch should greater than 0"
            assert warmup_epoch < epoch_nums, "warmup_epoch should less than epoch_nums"
        self.warmup_epoch = warmup_epoch
        self.warmup_steps = warmup_epoch * step_per_epoch  # 热身steps:int(epoch*step_per_epoch)

    def _piecewise_decay(self):
        gamma = self.gamma
        bd = [self.step_per_epoch * e for e in self.decay_epoch]
        lr = [self.base_lr * (gamma ** i) for i in range(len(bd) + 1)]
        decayed_lr = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
        return decayed_lr

    def _poly_decay(self):
        decayed_lr = fluid.layers.polynomial_decay(
            self.base_lr, self.total_step, end_learning_rate=self.end_lr, power=self.power)
        return decayed_lr

    def _cosine_decay(self):
        decayed_lr = fluid.layers.cosine_decay(
            self.base_lr, self.step_per_epoch, self.epoch_nums)
        return decayed_lr

    def get_lr(self):
        if self.lr_policy.lower() == 'poly':
            if self.warm_up:
                warm_up_end_lr = (self.base_lr - self.end_lr) * pow(
                    (1 - self.warmup_steps / self.total_step), self.power) + self.end_lr
                print('poly warm_up_end_lr:', warm_up_end_lr)
                decayed_lr = fluid.layers.linear_lr_warmup(self._poly_decay(),
                                                           warmup_steps=self.warmup_steps,
                                                           start_lr=0.0,
                                                           end_lr=warm_up_end_lr)
            else:
                decayed_lr = self._poly_decay()
        elif self.lr_policy.lower() == 'piecewise':
            if self.warm_up:
                assert self.warmup_steps < self.decay_epoch[0] * self.step_per_epoch
                warm_up_end_lr = self.base_lr
                print('piecewise warm_up_end_lr:', warm_up_end_lr)
                decayed_lr = fluid.layers.linear_lr_warmup(self._piecewise_decay(),
                                                           warmup_steps=self.warmup_steps,
                                                           start_lr=0.0,
                                                           end_lr=warm_up_end_lr)
            else:
                decayed_lr = self._piecewise_decay()
        elif self.lr_policy.lower() == 'cosine':
            if self.warm_up:
                warm_up_end_lr = self.base_lr*0.5*(math.cos(self.warmup_epoch*math.pi/self.epoch_nums)+1)
                print('cosine warm_up_end_lr:', warm_up_end_lr)
                decayed_lr = fluid.layers.linear_lr_warmup(self._cosine_decay(),
                                                           warmup_steps=self.warmup_steps,
                                                           start_lr=0.0,
                                                           end_lr=warm_up_end_lr)
            else:
                decayed_lr = self._cosine_decay()
        else:
            raise Exception(
                "unsupport learning decay policy! only support poly,piecewise,cosine"
            )
        return decayed_lr


if __name__ == '__main__':
    epoch_nums = 200
    step_per_epoch = 180
    base_lr = 0.003
    warmup_epoch = 5   # 热身数
    lr_scheduler = Lr(lr_policy='poly', base_lr=base_lr, epoch_nums=epoch_nums, step_per_epoch=step_per_epoch,
                      warm_up=True, warmup_epoch=warmup_epoch, decay_epoch=[50])
    lr = lr_scheduler.get_lr()
    exe = fluid.Executor(fluid.CPUPlace())
    exe.run(fluid.default_startup_program())

    lr_list = []
    for epoch in range(epoch_nums):
        for i in range(step_per_epoch):
            x = exe.run(fluid.default_main_program(),
                        fetch_list=[lr])
            lr_list.append(x[0])
            # print(x[0])
    # 绘图
    from matplotlib import pyplot as plt
    plt.plot(range(epoch_nums*step_per_epoch), lr_list)
    plt.xlabel('step')
    plt.ylabel('lr')
    plt.show()