loss.py 5.0 KB
Newer Older
R
Rosun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import paddle.fluid as fluid
import numpy as np
import importlib
from src.utils.config import cfg


def softmax_with_loss(logit, label, ignore_mask=None, num_classes=2):
    ignore_mask = fluid.layers.cast(ignore_mask, 'float32')
    label = fluid.layers.elementwise_min( label, fluid.layers.assign(np.array([num_classes - 1], dtype=np.int32)))
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.reshape(logit, [-1, num_classes])
    label = fluid.layers.reshape(label, [-1, 1])
    label = fluid.layers.cast(label, 'int64')
    ignore_mask = fluid.layers.reshape(ignore_mask, [-1, 1])

    loss, probs = fluid.layers.softmax_with_cross_entropy(
        logit,
        label,
        ignore_index=cfg.DATASET.IGNORE_INDEX,
        return_softmax=True)

    loss = loss * ignore_mask
    avg_loss = fluid.layers.mean(loss) / fluid.layers.mean(ignore_mask)

    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return avg_loss

# to change, how to appicate ignore index and ignore mask
def dice_loss(logit, label, ignore_mask=None, epsilon=0.00001):
    if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
        raise Exception("dice loss is only applicable to one channel classfication")
    ignore_mask = fluid.layers.cast(ignore_mask, 'float32')
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    label  = fluid.layers.transpose(label, [0, 2, 3, 1])
    label = fluid.layers.cast(label, 'int64')
    ignore_mask = fluid.layers.transpose(ignore_mask, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit = logit * ignore_mask
    label = label * ignore_mask
    reduce_dim = list(range(1, len(logit.shape)))
    inse = fluid.layers.reduce_sum(logit * label, dim=reduce_dim)
    dice_denominator = fluid.layers.reduce_sum(
        logit, dim=reduce_dim) + fluid.layers.reduce_sum(
        label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return fluid.layers.reduce_mean(dice_score)

def bce_loss(logit, label, ignore_mask=None):
    if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
        raise Exception("bce loss is only applicable to binary classfication")
    label = fluid.layers.cast(label, 'float32')
    loss = fluid.layers.sigmoid_cross_entropy_with_logits(
        x=logit,
        label=label,
        ignore_index=cfg.DATASET.IGNORE_INDEX,
        normalize=True) # or False
    loss = fluid.layers.reduce_sum(loss)
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return loss


def multi_softmax_with_loss(logits, label, ignore_mask=None, num_classes=2):
    if isinstance(logits, tuple):
        print("logits.type: ",type(logits))
        avg_loss = 0
        for i, logit in enumerate(logits):
            logit_label = fluid.layers.resize_nearest(label, logit.shape[2:])
            logit_mask = (logit_label.astype('int32') !=
                          cfg.DATASET.IGNORE_INDEX).astype('int32')
            loss = softmax_with_loss(logit, logit_label, logit_mask,
                                     num_classes)
            avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
    else:
        avg_loss = softmax_with_loss(logits, label, ignore_mask, num_classes)
    return avg_loss

def multi_dice_loss(logits, label, ignore_mask=None):
    if isinstance(logits, tuple):
        avg_loss = 0
        for i, logit in enumerate(logits):
            logit_label = fluid.layers.resize_nearest(label, logit.shape[2:])
            logit_mask = (logit_label.astype('int32') !=
                          cfg.DATASET.IGNORE_INDEX).astype('int32')
            loss = dice_loss(logit, logit_label, logit_mask)
            avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
    else:
        avg_loss = dice_loss(logits, label, ignore_mask)
    return avg_loss

def multi_bce_loss(logits, label, ignore_mask=None):
    if isinstance(logits, tuple):
        avg_loss = 0
        for i, logit in enumerate(logits):
            logit_label = fluid.layers.resize_nearest(label, logit.shape[2:])
            logit_mask = (logit_label.astype('int32') !=
                          cfg.DATASET.IGNORE_INDEX).astype('int32')
            loss = bce_loss(logit, logit_label, logit_mask)
            avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
    else:
        avg_loss = bce_loss(logits, label, ignore_mask)
    return avg_loss