save_utils.py 5.7 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
from utils.config import cfg
from utils import calibration as calib
import utils.cyops.kitti_utils as kitti_utils 

__all__ = ['save_rpn_feature', 'save_kitti_result', 'save_kitti_format']


def save_rpn_feature(rets, kitti_features_dir):
    """
    save rpn features for RCNN offline training
    """

    sample_id = rets['sample_id'][0]
    backbone_xyz = rets['backbone_xyz'][0]
    backbone_feature = rets['backbone_feature'][0]
    pts_features = rets['pts_features'][0]
    seg_mask = rets['seg_mask'][0]
    rpn_cls = rets['rpn_cls'][0]

    for i in range(len(sample_id)):
        pts_intensity = pts_features[i, :, 0]
        s_id = sample_id[i, 0]

        output_file = os.path.join(kitti_features_dir, '%06d.npy' % s_id)
        xyz_file = os.path.join(kitti_features_dir, '%06d_xyz.npy' % s_id)
        seg_file = os.path.join(kitti_features_dir, '%06d_seg.npy' % s_id)
        intensity_file = os.path.join(
            kitti_features_dir, '%06d_intensity.npy' % s_id)
        np.save(output_file, backbone_feature[i])
        np.save(xyz_file, backbone_xyz[i])
        np.save(seg_file, seg_mask[i])
        np.save(intensity_file, pts_intensity)
        rpn_scores_raw_file = os.path.join(
            kitti_features_dir, '%06d_rawscore.npy' % s_id)
        np.save(rpn_scores_raw_file, rpn_cls[i])


def save_kitti_result(rets, seg_output_dir, kitti_output_dir, reader, classes):
    sample_id = rets['sample_id'][0]
    roi_scores_row = rets['roi_scores_row'][0]
    bboxes3d = rets['rois'][0]
    pts_rect = rets['pts_rect'][0]
    seg_mask = rets['seg_mask'][0]
    rpn_cls_label = rets['rpn_cls_label'][0]
    gt_boxes3d = rets['gt_boxes3d'][0]
    gt_boxes3d_num = rets['gt_boxes3d'][1]

    for i in range(len(sample_id)):
        s_id = sample_id[i, 0]

        seg_result_data = np.concatenate((pts_rect[i].reshape(-1, 3),
                                          rpn_cls_label[i].reshape(-1, 1),
                                          seg_mask[i].reshape(-1, 1)),
                                         axis=1).astype('float16')
        seg_output_file = os.path.join(seg_output_dir, '%06d.npy' % s_id)
        np.save(seg_output_file, seg_result_data)

        scores = roi_scores_row[i, :]
        bbox3d = bboxes3d[i, :]
        img_shape = reader.get_image_shape(s_id)
        calib = reader.get_calib(s_id)

        corners3d = kitti_utils.boxes3d_to_corners3d(bbox3d)
        img_boxes, _ = calib.corners3d_to_img_boxes(corners3d)

        img_boxes[:, 0] = np.clip(img_boxes[:, 0], 0, img_shape[1] - 1)
        img_boxes[:, 1] = np.clip(img_boxes[:, 1], 0, img_shape[0] - 1)
        img_boxes[:, 2] = np.clip(img_boxes[:, 2], 0, img_shape[1] - 1)
        img_boxes[:, 3] = np.clip(img_boxes[:, 3], 0, img_shape[0] - 1)

        img_boxes_w = img_boxes[:, 2] - img_boxes[:, 0]
        img_boxes_h = img_boxes[:, 3] - img_boxes[:, 1]
        box_valid_mask = np.logical_and(
            img_boxes_w < img_shape[1] * 0.8, img_boxes_h < img_shape[0] * 0.8)

        kitti_output_file = os.path.join(kitti_output_dir, '%06d.txt' % s_id)
        with open(kitti_output_file, 'w') as f:
            for k in range(bbox3d.shape[0]):
                if box_valid_mask[k] == 0:
                    continue
                x, z, ry = bbox3d[k, 0], bbox3d[k, 2], bbox3d[k, 6]
                beta = np.arctan2(z, x)
                alpha = -np.sign(beta) * np.pi / 2 + beta + ry

                f.write('{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}\n'.format(
                    classes, alpha, img_boxes[k, 0], img_boxes[k, 1], img_boxes[k, 2], img_boxes[k, 3],
                    bbox3d[k, 3], bbox3d[k, 4], bbox3d[k, 5], bbox3d[k, 0], bbox3d[k, 1], bbox3d[k, 2],
                    bbox3d[k, 6], scores[k]))


def save_kitti_format(sample_id, calib, bbox3d, kitti_output_dir, scores, img_shape):
    corners3d = kitti_utils.boxes3d_to_corners3d(bbox3d)
    img_boxes, _ = calib.corners3d_to_img_boxes(corners3d)
    img_boxes[:, 0] = np.clip(img_boxes[:, 0], 0, img_shape[1] - 1)
    img_boxes[:, 1] = np.clip(img_boxes[:, 1], 0, img_shape[0] - 1)
    img_boxes[:, 2] = np.clip(img_boxes[:, 2], 0, img_shape[1] - 1)
    img_boxes[:, 3] = np.clip(img_boxes[:, 3], 0, img_shape[0] - 1)

    img_boxes_w = img_boxes[:, 2] - img_boxes[:, 0]
    img_boxes_h = img_boxes[:, 3] - img_boxes[:, 1]
    box_valid_mask = np.logical_and(img_boxes_w < img_shape[1] * 0.8, img_boxes_h < img_shape[0] * 0.8)

    kitti_output_file = os.path.join(kitti_output_dir, '%06d.txt' % sample_id)
    with open(kitti_output_file, 'w') as f:
        for k in range(bbox3d.shape[0]):
            if box_valid_mask[k] == 0:
                continue
            x, z, ry = bbox3d[k, 0], bbox3d[k, 2], bbox3d[k, 6]
            beta = np.arctan2(z, x)
            alpha = -np.sign(beta) * np.pi / 2 + beta + ry

            f.write('%s -1 -1 %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f\n' %
                  (cfg.CLASSES, alpha, img_boxes[k, 0], img_boxes[k, 1], img_boxes[k, 2], img_boxes[k, 3],
                   bbox3d[k, 3], bbox3d[k, 4], bbox3d[k, 5], bbox3d[k, 0], bbox3d[k, 1], bbox3d[k, 2],
                   bbox3d[k, 6], scores[k]))