proposal_target.py 17.7 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
import numpy as np
from utils.cyops import kitti_utils, roipool3d_utils, iou3d_utils

CLOSE_RANDOM = False 

def get_proposal_target_func(cfg, mode='TRAIN'):

    def sample_rois_for_rcnn(roi_boxes3d, gt_boxes3d):
        """
        :param roi_boxes3d: (B, M, 7)
        :param gt_boxes3d: (B, N, 8) [x, y, z, h, w, l, ry, cls]
        :return
            batch_rois: (B, N, 7)
            batch_gt_of_rois: (B, N, 8)
            batch_roi_iou: (B, N)
        """

        batch_size = roi_boxes3d.shape[0]
        
        #batch_size = 1
        fg_rois_per_image = int(np.round(cfg.RCNN.FG_RATIO * cfg.RCNN.ROI_PER_IMAGE))

        batch_rois = np.zeros((batch_size, cfg.RCNN.ROI_PER_IMAGE, 7))
        batch_gt_of_rois = np.zeros((batch_size, cfg.RCNN.ROI_PER_IMAGE, 7))
        batch_roi_iou = np.zeros((batch_size, cfg.RCNN.ROI_PER_IMAGE))
        for idx in range(batch_size):
            cur_roi, cur_gt = roi_boxes3d[idx], gt_boxes3d[idx]
            k = cur_gt.shape[0] - 1
            while cur_gt[k].sum() == 0:
                k -= 1
            cur_gt = cur_gt[:k + 1]
            # include gt boxes in the candidate rois
            iou3d = iou3d_utils.boxes_iou3d(cur_roi, cur_gt[:, 0:7])  # (M, N)
            max_overlaps = np.max(iou3d, axis=1)
            gt_assignment = np.argmax(iou3d, axis=1)
            # sample fg, easy_bg, hard_bg
            fg_thresh = min(cfg.RCNN.REG_FG_THRESH, cfg.RCNN.CLS_FG_THRESH)
            fg_inds = np.where(max_overlaps >= fg_thresh)[0].reshape(-1)

            # TODO: this will mix the fg and bg when CLS_BG_THRESH_LO < iou < CLS_BG_THRESH
            # fg_inds = torch.cat((fg_inds, roi_assignment), dim=0)  # consider the roi which has max_iou with gt as fg
            easy_bg_inds = np.where(max_overlaps < cfg.RCNN.CLS_BG_THRESH_LO)[0].reshape(-1)
            hard_bg_inds = np.where((max_overlaps < cfg.RCNN.CLS_BG_THRESH) & (max_overlaps >= cfg.RCNN.CLS_BG_THRESH_LO))[0].reshape(-1)

            fg_num_rois = fg_inds.shape[0]
            bg_num_rois = hard_bg_inds.shape[0] + easy_bg_inds.shape[0]

            if fg_num_rois > 0 and bg_num_rois > 0:
                # sampling fg
                fg_rois_per_this_image = min(fg_rois_per_image, fg_num_rois)
                if CLOSE_RANDOM:
                    fg_inds = fg_inds[:fg_rois_per_this_image]
                else:
                    rand_num = np.random.permutation(fg_num_rois)
                    fg_inds = fg_inds[rand_num[:fg_rois_per_this_image]]
                
                # sampling bg
                bg_rois_per_this_image = cfg.RCNN.ROI_PER_IMAGE - fg_rois_per_this_image
                bg_inds = sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image)

            elif fg_num_rois > 0 and bg_num_rois == 0:
                # sampling fg
                rand_num = np.floor(np.random.rand(cfg.RCNN.ROI_PER_IMAGE) * fg_num_rois)
                # rand_num = torch.from_numpy(rand_num).type_as(gt_boxes3d).long()
                fg_inds = fg_inds[rand_num]
                fg_rois_per_this_image = cfg.RCNN.ROI_PER_IMAGE
                bg_rois_per_this_image = 0
            elif bg_num_rois > 0 and fg_num_rois == 0:
                # sampling bg
                bg_rois_per_this_image = cfg.RCNN.ROI_PER_IMAGE
                bg_inds = sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image)

                fg_rois_per_this_image = 0
            else:
                import pdb
                pdb.set_trace()
                raise NotImplementedError
            # augment the rois by noise
            roi_list, roi_iou_list, roi_gt_list = [], [], []
            if fg_rois_per_this_image > 0:
                fg_rois_src = cur_roi[fg_inds]
                gt_of_fg_rois = cur_gt[gt_assignment[fg_inds]]
                iou3d_src = max_overlaps[fg_inds]
                fg_rois, fg_iou3d = aug_roi_by_noise(
                    fg_rois_src, gt_of_fg_rois, iou3d_src, aug_times=cfg.RCNN.ROI_FG_AUG_TIMES)
                roi_list.append(fg_rois)
                roi_iou_list.append(fg_iou3d)
                roi_gt_list.append(gt_of_fg_rois)

            if bg_rois_per_this_image > 0:
                bg_rois_src = cur_roi[bg_inds]
                gt_of_bg_rois = cur_gt[gt_assignment[bg_inds]]
                iou3d_src = max_overlaps[bg_inds]
                aug_times = 1 if cfg.RCNN.ROI_FG_AUG_TIMES > 0 else 0
                bg_rois, bg_iou3d = aug_roi_by_noise(
                    bg_rois_src, gt_of_bg_rois, iou3d_src, aug_times=aug_times)
                roi_list.append(bg_rois)
                roi_iou_list.append(bg_iou3d)
                roi_gt_list.append(gt_of_bg_rois)

            
            rois = np.concatenate(roi_list, axis=0)
            iou_of_rois = np.concatenate(roi_iou_list, axis=0)
            gt_of_rois = np.concatenate(roi_gt_list, axis=0)
            batch_rois[idx] = rois
            batch_gt_of_rois[idx] = gt_of_rois
            batch_roi_iou[idx] = iou_of_rois

        return batch_rois, batch_gt_of_rois, batch_roi_iou

    def sample_bg_inds(hard_bg_inds, easy_bg_inds, bg_rois_per_this_image):

        if hard_bg_inds.shape[0] > 0 and easy_bg_inds.shape[0] > 0:
            hard_bg_rois_num = int(bg_rois_per_this_image * cfg.RCNN.HARD_BG_RATIO)
            easy_bg_rois_num = bg_rois_per_this_image - hard_bg_rois_num
            # sampling hard bg
            if CLOSE_RANDOM:
                rand_idx = list(np.arange(0,hard_bg_inds.shape[0]))*hard_bg_rois_num
                rand_idx = rand_idx[:hard_bg_rois_num]
            else:
                rand_idx = np.random.randint(low=0, high=hard_bg_inds.shape[0], size=(hard_bg_rois_num,))
            hard_bg_inds = hard_bg_inds[rand_idx]
            # sampling easy bg
            if CLOSE_RANDOM:
                rand_idx = list(np.arange(0,easy_bg_inds.shape[0]))*easy_bg_rois_num
                rand_idx = rand_idx[:easy_bg_rois_num]
            else:
                rand_idx = np.random.randint(low=0, high=easy_bg_inds.shape[0], size=(easy_bg_rois_num,))
            easy_bg_inds = easy_bg_inds[rand_idx]
            bg_inds = np.concatenate([hard_bg_inds, easy_bg_inds], axis=0)
        elif hard_bg_inds.shape[0] > 0 and easy_bg_inds.shape[0] == 0:
            hard_bg_rois_num = bg_rois_per_this_image
            # sampling hard bg
            rand_idx = np.random.randint(low=0, high=hard_bg_inds.shape[0], size=(hard_bg_rois_num,))
            bg_inds = hard_bg_inds[rand_idx]
        elif hard_bg_inds.shape[0] == 0 and easy_bg_inds.shape[0] > 0:
            easy_bg_rois_num = bg_rois_per_this_image
            # sampling easy bg
            rand_idx = np.random.randint(low=0, high=easy_bg_inds.shape[0], size=(easy_bg_rois_num,))
            bg_inds = easy_bg_inds[rand_idx]
        else:
            raise NotImplementedError
        
        return bg_inds

    def aug_roi_by_noise(roi_boxes3d, gt_boxes3d, iou3d_src, aug_times=10):
        iou_of_rois = np.zeros(roi_boxes3d.shape[0]).astype(gt_boxes3d.dtype)
        pos_thresh = min(cfg.RCNN.REG_FG_THRESH, cfg.RCNN.CLS_FG_THRESH)

        for k in range(roi_boxes3d.shape[0]):
            temp_iou = cnt = 0
            roi_box3d = roi_boxes3d[k]

            gt_box3d = gt_boxes3d[k].reshape(1, 7)
            aug_box3d = roi_box3d
            keep = True
            while temp_iou < pos_thresh and cnt < aug_times:
                if True: #np.random.rand() < 0.2:
                    aug_box3d = roi_box3d  # p=0.2 to keep the original roi box
                    keep = True
                else:
                    aug_box3d = random_aug_box3d(roi_box3d)
                    keep = False
                aug_box3d = aug_box3d.reshape((1, 7))
                iou3d = iou3d_utils.boxes_iou3d(aug_box3d, gt_box3d)
                temp_iou = iou3d[0][0]
                cnt += 1
            roi_boxes3d[k] = aug_box3d.reshape(-1)
            if cnt == 0 or keep:
                iou_of_rois[k] = iou3d_src[k]
            else:
                iou_of_rois[k] = temp_iou
        return roi_boxes3d, iou_of_rois

    def random_aug_box3d(box3d):
        """
        :param box3d: (7) [x, y, z, h, w, l, ry]
        random shift, scale, orientation
        """
        if cfg.RCNN.REG_AUG_METHOD == 'single':
            
            pos_shift = (np.random.rand(3) - 0.5)  # [-0.5 ~ 0.5]
            hwl_scale = (np.random.rand(3) - 0.5) / (0.5 / 0.15) + 1.0  #
            angle_rot = (np.random.rand(1) - 0.5) / (0.5 / (np.pi / 12))  # [-pi/12 ~ pi/12]
            aug_box3d = np.concatenate([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot], axis=0)
            return aug_box3d
        elif cfg.RCNN.REG_AUG_METHOD == 'multiple':
            # pos_range, hwl_range, angle_range, mean_iou
            range_config = [[0.2, 0.1, np.pi / 12, 0.7],
                            [0.3, 0.15, np.pi / 12, 0.6],
                            [0.5, 0.15, np.pi / 9, 0.5],
                            [0.8, 0.15, np.pi / 6, 0.3],
                            [1.0, 0.15, np.pi / 3, 0.2]]
            idx = np.random.randint(low=0, high=len(range_config), size=(1,))[0]
            pos_shift = ((np.random.rand(3) - 0.5) / 0.5) * range_config[idx][0]
            hwl_scale = ((np.random.rand(3) - 0.5) / 0.5) * range_config[idx][1] + 1.0
            angle_rot = ((np.random.rand(1) - 0.5) / 0.5) * range_config[idx][2]
            aug_box3d = np.concatenate([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot], axis=0)
            return aug_box3d
        elif cfg.RCNN.REG_AUG_METHOD == 'normal':
            x_shift = np.random.normal(loc=0, scale=0.3)
            y_shift = np.random.normal(loc=0, scale=0.2)
            z_shift = np.random.normal(loc=0, scale=0.3)
            h_shift = np.random.normal(loc=0, scale=0.25)
            w_shift = np.random.normal(loc=0, scale=0.15)
            l_shift = np.random.normal(loc=0, scale=0.5)
            ry_shift = ((np.random.rand() - 0.5) / 0.5) * np.pi / 12
            aug_box3d = np.array([box3d[0] + x_shift, box3d[1] + y_shift, box3d[2] + z_shift, box3d[3] + h_shift,
                                  box3d[4] + w_shift, box3d[5] + l_shift, box3d[6] + ry_shift], dtype=np.float32)
            aug_box3d = aug_box3d.astype(box3d.dtype)
            return aug_box3d
        else:
            raise NotImplementedError

    def data_augmentation(pts, rois, gt_of_rois):
        """
        :param pts: (B, M, 512, 3)
        :param rois: (B, M. 7)
        :param gt_of_rois: (B, M, 7)
        :return:
        """
        batch_size, boxes_num = pts.shape[0], pts.shape[1]

        # rotation augmentation
        angles = (np.random.rand(batch_size, boxes_num) - 0.5 / 0.5) * (np.pi / cfg.AUG_ROT_RANGE)
        # calculate gt alpha from gt_of_rois
        temp_x, temp_z, temp_ry = gt_of_rois[:, :, 0], gt_of_rois[:, :, 2], gt_of_rois[:, :, 6]
        temp_beta = np.arctan2(temp_z, temp_x)
        gt_alpha = -np.sign(temp_beta) * np.pi / 2 + temp_beta + temp_ry  # (B, M)

        temp_x, temp_z, temp_ry = rois[:, :, 0], rois[:, :, 2], rois[:, :, 6]
        temp_beta = np.arctan2(temp_z, temp_x)
        roi_alpha = -np.sign(temp_beta) * np.pi / 2 + temp_beta + temp_ry  # (B, M)

        for k in range(batch_size):
            pts[k] = kitti_utils.rotate_pc_along_y_np(pts[k], angles[k])
            gt_of_rois[k] = np.squeeze(kitti_utils.rotate_pc_along_y_np(
                np.expand_dims(gt_of_rois[k], axis=1), angles[k]), axis=1)
            rois[k] = np.squeeze(kitti_utils.rotate_pc_along_y_np(
                np.expand_dims(rois[k], axis=1), angles[k]),axis=1)

            # calculate the ry after rotation
            temp_x, temp_z = gt_of_rois[:, :, 0], gt_of_rois[:, :, 2]
            temp_beta = np.arctan2(temp_z, temp_x)
            gt_of_rois[:, :, 6] = np.sign(temp_beta) * np.pi / 2 + gt_alpha - temp_beta
            temp_x, temp_z = rois[:, :, 0], rois[:, :, 2]
            temp_beta = np.arctan2(temp_z, temp_x)
            rois[:, :, 6] = np.sign(temp_beta) * np.pi / 2 + roi_alpha - temp_beta
        # scaling augmentation
        scales = 1 + ((np.random.rand(batch_size, boxes_num) - 0.5) / 0.5) * 0.05
        pts = pts * np.expand_dims(np.expand_dims(scales, axis=2), axis=3)
        gt_of_rois[:, :, 0:6] = gt_of_rois[:, :, 0:6] * np.expand_dims(scales, axis=2)
        rois[:, :, 0:6] = rois[:, :, 0:6] * np.expand_dims(scales, axis=2)

        # flip augmentation
        flip_flag = np.sign(np.random.rand(batch_size, boxes_num) - 0.5)
        pts[:, :, :, 0] = pts[:, :, :, 0] * np.expand_dims(flip_flag, axis=2)
        gt_of_rois[:, :, 0] = gt_of_rois[:, :, 0] * flip_flag
        # flip orientation: ry > 0: pi - ry, ry < 0: -pi - ry
        src_ry = gt_of_rois[:, :, 6]
        ry = (flip_flag == 1).astype(np.float32) * src_ry + (flip_flag == -1).astype(np.float32) * (np.sign(src_ry) * np.pi - src_ry)
        gt_of_rois[:, :, 6] = ry

        rois[:, :, 0] = rois[:, :, 0] * flip_flag
        # flip orientation: ry > 0: pi - ry, ry < 0: -pi - ry
        src_ry = rois[:, :, 6]
        ry = (flip_flag == 1).astype(np.float32) * src_ry + (flip_flag == -1).astype(np.float32) * (np.sign(src_ry) * np.pi - src_ry)
        rois[:, :, 6] = ry

        return pts, rois, gt_of_rois

    def generate_proposal_target(seg_mask,rpn_features,gt_boxes3d,rpn_xyz,pts_depth,roi_boxes3d,rpn_intensity):
        seg_mask = np.array(seg_mask)
        features = np.array(rpn_features)
        gt_boxes3d = np.array(gt_boxes3d)
        rpn_xyz = np.array(rpn_xyz)
        pts_depth = np.array(pts_depth)
        roi_boxes3d = np.array(roi_boxes3d)
        rpn_intensity = np.array(rpn_intensity)
        batch_rois, batch_gt_of_rois, batch_roi_iou = sample_rois_for_rcnn(roi_boxes3d, gt_boxes3d)
        
        if cfg.RCNN.USE_INTENSITY:
            pts_extra_input_list = [np.expand_dims(rpn_intensity, axis=2),
                                    np.expand_dims(seg_mask, axis=2)]
        else:
            pts_extra_input_list = [np.expand_dims(seg_mask, axis=2)]

        if cfg.RCNN.USE_DEPTH:
            pts_depth = pts_depth / 70.0 - 0.5
            pts_extra_input_list.append(np.expand_dims(pts_depth, axis=2))
        pts_extra_input = np.concatenate(pts_extra_input_list, axis=2)
        
        # point cloud pooling
        pts_feature = np.concatenate((pts_extra_input, rpn_features), axis=2)
        
        batch_rois = batch_rois.astype(np.float32)

        pooled_features, pooled_empty_flag = roipool3d_utils.roipool3d_gpu(
            rpn_xyz, pts_feature, batch_rois, cfg.RCNN.POOL_EXTRA_WIDTH,
            sampled_pt_num=cfg.RCNN.NUM_POINTS
        )

        sampled_pts, sampled_features = pooled_features[:, :, :, 0:3], pooled_features[:, :, :, 3:]
        # data augmentation
        if cfg.AUG_DATA:
            # data augmentation
            sampled_pts, batch_rois, batch_gt_of_rois = \
                data_augmentation(sampled_pts, batch_rois, batch_gt_of_rois)

        # canonical transformation
        batch_size = batch_rois.shape[0]
        roi_ry = batch_rois[:, :, 6] % (2 * np.pi)
        roi_center = batch_rois[:, :, 0:3]
        sampled_pts = sampled_pts - np.expand_dims(roi_center, axis=2)  # (B, M, 512, 3)
        batch_gt_of_rois[:, :, 0:3] = batch_gt_of_rois[:, :, 0:3] - roi_center
        batch_gt_of_rois[:, :, 6] = batch_gt_of_rois[:, :, 6] - roi_ry

        for k in range(batch_size):
            sampled_pts[k] = kitti_utils.rotate_pc_along_y_np(sampled_pts[k], batch_rois[k, :, 6])
            batch_gt_of_rois[k] = np.squeeze(kitti_utils.rotate_pc_along_y_np(
                np.expand_dims(batch_gt_of_rois[k], axis=1), roi_ry[k]), axis=1)

        # regression valid mask
        valid_mask = (pooled_empty_flag == 0)
        reg_valid_mask = ((batch_roi_iou > cfg.RCNN.REG_FG_THRESH) & valid_mask).astype(np.float32)
    
        # classification label
        batch_cls_label = (batch_roi_iou > cfg.RCNN.CLS_FG_THRESH).astype(np.int64)
        invalid_mask = (batch_roi_iou > cfg.RCNN.CLS_BG_THRESH) & (batch_roi_iou < cfg.RCNN.CLS_FG_THRESH)
        batch_cls_label[valid_mask == 0] = -1
        batch_cls_label[invalid_mask > 0] = -1

        output_dict = {'sampled_pts': sampled_pts.reshape(-1, cfg.RCNN.NUM_POINTS, 3).astype(np.float32),
                       'pts_feature': sampled_features.reshape(-1, cfg.RCNN.NUM_POINTS, sampled_features.shape[3]).astype(np.float32),
                       'cls_label': batch_cls_label.reshape(-1),
                       'reg_valid_mask': reg_valid_mask.reshape(-1).astype(np.float32),
                       'gt_of_rois': batch_gt_of_rois.reshape(-1, 7).astype(np.float32),
                       'gt_iou': batch_roi_iou.reshape(-1).astype(np.float32),
                       'roi_boxes3d': batch_rois.reshape(-1, 7).astype(np.float32)}
        
        return output_dict.values()

    return generate_proposal_target


if __name__ == "__main__":
    
    input_dict = {}
    input_dict['roi_boxes3d'] = np.load("models/rpn_data/roi_boxes3d.npy")
    input_dict['gt_boxes3d'] = np.load("models/rpn_data/gt_boxes3d.npy")
    input_dict['rpn_xyz'] = np.load("models/rpn_data/rpn_xyz.npy")
    input_dict['rpn_features'] = np.load("models/rpn_data/rpn_features.npy")
    input_dict['rpn_intensity'] = np.load("models/rpn_data/rpn_intensity.npy")
    input_dict['seg_mask'] = np.load("models/rpn_data/seg_mask.npy")
    input_dict['pts_depth'] = np.load("models/rpn_data/pts_depth.npy")
    for k, v in input_dict.items():
        print(k, v.shape, np.sum(np.abs(v)))
        input_dict[k] = np.expand_dims(v, axis=0)

    from utils.config import cfg
    cfg.RPN.LOC_XZ_FINE = True
    cfg.TEST.RPN_DISTANCE_BASED_PROPOSE = False
    cfg.RPN.NMS_TYPE = 'rotate'

    proposal_target_func = get_proposal_target_func(cfg)
    out_dict = proposal_target_func(input_dict['seg_mask'],input_dict['rpn_features'],input_dict['gt_boxes3d'],
                                    input_dict['rpn_xyz'],input_dict['pts_depth'],input_dict['roi_boxes3d'],input_dict['rpn_intensity'])
    for key in out_dict.keys():
        print("name:{}, shape{}".format(key,out_dict[key].shape))