metric_utils.py 8.8 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import logging
import numpy as np
import utils.cyops.kitti_utils as kitti_utils 
from utils.config import cfg
from utils.box_utils import boxes_iou3d, box_nms_eval, boxes3d_to_bev
from utils.save_utils import save_rpn_feature, save_kitti_result, save_kitti_format

__all__ = ['calc_iou_recall', 'rpn_metric', 'rcnn_metric']

logging.root.handlers = []
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)


def calc_iou_recall(rets, thresh_list):
    rpn_cls_label = rets['rpn_cls_label'][0]
    boxes3d = rets['rois'][0]
    seg_mask = rets['seg_mask'][0]
    sample_id = rets['sample_id'][0]
    gt_boxes3d = rets['gt_boxes3d'][0]
    gt_boxes3d_num = rets['gt_boxes3d'][1]

    gt_box_idx = 0
    recalled_bbox_list = [0] * len(thresh_list)
    gt_box_num = 0
    rpn_iou_sum = 0.
    for i in range(len(gt_boxes3d_num)):
        cur_rpn_cls_label = rpn_cls_label[i]
        cur_boxes3d = boxes3d[i]
        cur_seg_mask = seg_mask[i]
        cur_sample_id = sample_id[i]
        cur_gt_boxes3d = gt_boxes3d[gt_box_idx: gt_box_idx +
                                    gt_boxes3d_num[0][i]]
        gt_box_idx += gt_boxes3d_num[0][i]

        k = cur_gt_boxes3d.__len__() - 1
        while k >= 0 and np.sum(cur_gt_boxes3d[k]) == 0:
            k -= 1
        cur_gt_boxes3d = cur_gt_boxes3d[:k + 1]

        if cur_gt_boxes3d.shape[0] > 0:
            iou3d = boxes_iou3d(cur_boxes3d, cur_gt_boxes3d[:, 0:7])
            gt_max_iou = iou3d.max(axis=0)

            for idx, thresh in enumerate(thresh_list):
                recalled_bbox_list[idx] += np.sum(gt_max_iou > thresh)
            gt_box_num += cur_gt_boxes3d.__len__()

        fg_mask = cur_rpn_cls_label > 0
        correct = np.sum(np.logical_and(
            cur_seg_mask == cur_rpn_cls_label, fg_mask))
        union = np.sum(fg_mask) + np.sum(cur_seg_mask > 0) - correct
        rpn_iou = float(correct) / max(float(union), 1.0)
        rpn_iou_sum += rpn_iou
        logger.debug('sample_id:{}, rpn_iou:{}, gt_box_num:{}, recalled_bbox_list:{}'.format(
            sample_id, rpn_iou, gt_box_num, str(recalled_bbox_list)))

    return len(gt_boxes3d_num), gt_box_num, rpn_iou_sum, recalled_bbox_list


def rpn_metric(queue, mdict, lock, thresh_list, is_save_rpn_feature, kitti_feature_dir,
               seg_output_dir, kitti_output_dir, kitti_rcnn_reader, classes):
    while True:
        rets_dict = queue.get()
        if rets_dict is None:
            lock.acquire()
            mdict['exit_proc'] += 1
            lock.release()
            return 

        cnt, gt_box_num, rpn_iou_sum, recalled_bbox_list = calc_iou_recall(
            rets_dict, thresh_list)
        lock.acquire()
        mdict['total_cnt'] += cnt
        mdict['total_gt_bbox'] += gt_box_num
        mdict['total_rpn_iou'] += rpn_iou_sum
        for i, bbox_num in enumerate(recalled_bbox_list):
            mdict['total_recalled_bbox_list_{}'.format(i)] += bbox_num
        logger.debug("rpn_metric: {}".format(str(mdict)))
        lock.release()

        if is_save_rpn_feature:
            save_rpn_feature(rets_dict, kitti_feature_dir)
            save_kitti_result(
                rets_dict, seg_output_dir, kitti_output_dir, kitti_rcnn_reader, classes)


def rcnn_metric(queue, mdict, lock, thresh_list, kitti_rcnn_reader, roi_output_dir,
                refine_output_dir, final_output_dir, is_save_result=False):
    while True:
        rets_dict = queue.get()
        if rets_dict is None:
            lock.acquire()
            mdict['exit_proc'] += 1
            lock.release()
            return 
        
        for k,v in rets_dict.items():
            rets_dict[k] = v[0]

        rcnn_cls = rets_dict['rcnn_cls']
        rcnn_reg = rets_dict['rcnn_reg']
        roi_boxes3d = rets_dict['roi_boxes3d']
        roi_scores = rets_dict['roi_scores']

        # bounding box regression
        anchor_size = cfg.CLS_MEAN_SIZE[0]
        pred_boxes3d = kitti_utils.decode_bbox_target(
            roi_boxes3d, 
            rcnn_reg,
            anchor_size=np.array(anchor_size),
            loc_scope=cfg.RCNN.LOC_SCOPE,
            loc_bin_size=cfg.RCNN.LOC_BIN_SIZE,
            num_head_bin=cfg.RCNN.NUM_HEAD_BIN,
            get_xz_fine=True, 
            get_y_by_bin=cfg.RCNN.LOC_Y_BY_BIN,
            loc_y_scope=cfg.RCNN.LOC_Y_SCOPE,
            loc_y_bin_size=cfg.RCNN.LOC_Y_BIN_SIZE,
            get_ry_fine=True
        )

        # scoring
        if rcnn_cls.shape[1] == 1:
            raw_scores = rcnn_cls.reshape(-1)
            norm_scores = rets_dict['norm_scores']
            pred_classes = norm_scores > cfg.RCNN.SCORE_THRESH
            pred_classes = pred_classes.astype(np.float32)
        else:
            pred_classes = np.argmax(rcnn_cls, axis=1).reshape(-1)
            raw_scores = rcnn_cls[:, pred_classes]

        # evaluation
        gt_iou = rets_dict['gt_iou']
        gt_boxes3d = rets_dict['gt_boxes3d']
        
        # recall
        if gt_boxes3d.size > 0:
            gt_num = gt_boxes3d.shape[1]
            gt_boxes3d = gt_boxes3d.reshape((-1,7))
            iou3d = boxes_iou3d(pred_boxes3d, gt_boxes3d)
            gt_max_iou = iou3d.max(axis=0)
            refined_iou = iou3d.max(axis=1)

            recalled_num = (gt_max_iou > 0.7).sum()
            roi_boxes3d = roi_boxes3d.reshape((-1,7))
            iou3d_in = boxes_iou3d(roi_boxes3d, gt_boxes3d)
            gt_max_iou_in = iou3d_in.max(axis=0)

            lock.acquire()
            mdict['total_gt_bbox'] += gt_num
            for idx, thresh in enumerate(thresh_list):
                recalled_bbox_num = (gt_max_iou > thresh).sum() 
                mdict['total_recalled_bbox_list_{}'.format(idx)] += recalled_bbox_num
            for idx, thresh in enumerate(thresh_list):
                roi_recalled_bbox_num = (gt_max_iou_in > thresh).sum()
                mdict['total_roi_recalled_bbox_list_{}'.format(idx)] += roi_recalled_bbox_num 
            lock.release()
        
        # classification accuracy
        cls_label = gt_iou > cfg.RCNN.CLS_FG_THRESH
        cls_label = cls_label.astype(np.float32)
        cls_valid_mask = (gt_iou >= cfg.RCNN.CLS_FG_THRESH) | (gt_iou <= cfg.RCNN.CLS_BG_THRESH)
        cls_valid_mask = cls_valid_mask.astype(np.float32)
        cls_acc = (pred_classes == cls_label).astype(np.float32)
        cls_acc = (cls_acc * cls_valid_mask).sum() / max(cls_valid_mask.sum(), 1.0) * 1.0 
        
        iou_thresh = 0.7 if cfg.CLASSES == 'Car' else 0.5
        cls_label_refined = (gt_iou >= iou_thresh)
        cls_label_refined = cls_label_refined.astype(np.float32)
        cls_acc_refined = (pred_classes == cls_label_refined).astype(np.float32).sum() / max(cls_label_refined.shape[0], 1.0) 
        
        sample_id = rets_dict['sample_id']
        image_shape = kitti_rcnn_reader.get_image_shape(sample_id)
        
        if is_save_result:
            roi_boxes3d_np = roi_boxes3d
            pred_boxes3d_np = pred_boxes3d
            calib = kitti_rcnn_reader.get_calib(sample_id)
            save_kitti_format(sample_id, calib, roi_boxes3d_np, roi_output_dir, roi_scores, image_shape)
            save_kitti_format(sample_id, calib, pred_boxes3d_np, refine_output_dir, raw_scores, image_shape)
        
        inds = norm_scores > cfg.RCNN.SCORE_THRESH
        if inds.astype(np.float32).sum() == 0:
            logger.debug("The num of 'norm_scores > thresh' of sample {} is 0".format(sample_id))
            continue
        pred_boxes3d_selected = pred_boxes3d[inds]
        raw_scores_selected = raw_scores[inds]
        # NMS thresh
        boxes_bev_selected = boxes3d_to_bev(pred_boxes3d_selected)
        scores_selected, pred_boxes3d_selected = box_nms_eval(boxes_bev_selected, raw_scores_selected, pred_boxes3d_selected, cfg.RCNN.NMS_THRESH)
        calib = kitti_rcnn_reader.get_calib(sample_id)
        save_kitti_format(sample_id, calib, pred_boxes3d_selected, final_output_dir, scores_selected, image_shape)
        lock.acquire()
        mdict['total_det_num'] += pred_boxes3d_selected.shape[0]
        mdict['total_cls_acc'] += cls_acc
        mdict['total_cls_acc_refined'] += cls_acc_refined
        lock.release()
        logger.debug("rcnn_metric: {}".format(str(mdict)))