box_utils.py 9.6 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
"""
Contains proposal functions
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid

from utils.config import cfg

__all__ = ["boxes3d_to_bev", "box_overlap_rotate", "boxes3d_to_bev", "box_iou", "box_nms"]


def boxes3d_to_bev(boxes3d):
    """
    Args:
        boxes3d: [N, 7], (x, y, z, h, w, l, ry)
    Return:
        boxes_bev: [N, 5], (x1, y1, x2, y2, ry)
    """
    boxes_bev = np.zeros((boxes3d.shape[0], 5), dtype='float32')

    cu, cv = boxes3d[:, 0], boxes3d[:, 2]
    half_l, half_w = boxes3d[:, 5] / 2, boxes3d[:, 4] / 2
    boxes_bev[:, 0], boxes_bev[:, 1] = cu - half_l, cv - half_w
    boxes_bev[:, 2], boxes_bev[:, 3] = cu + half_l, cv + half_w
    boxes_bev[:, 4] = boxes3d[:, 6]
    return boxes_bev


def rotate_around_center(center, angle_cos, angle_sin, corners):
    new_x = (corners[:, 0] - center[0]) * angle_cos + \
            (corners[:, 1] - center[1]) * angle_sin + center[0]
    new_y = -(corners[:, 0] - center[0]) * angle_sin + \
            (corners[:, 1] - center[1]) * angle_cos + center[1]
    return np.concatenate([new_x[:, np.newaxis], new_y[:, np.newaxis]], axis=-1)


def check_rect_cross(p1, p2, q1, q2):
    return min(p1[0], p2[0]) <= max(q1[0], q2[0]) and \
           min(q1[0], q2[0]) <= max(p1[0], p2[0]) and \
           min(p1[1], p2[1]) <= max(q1[1], q2[1]) and \
           min(q1[1], q2[1]) <= max(p1[1], p2[1])


def cross(p1, p2, p0):
    return (p1[0] - p0[0]) * (p2[1] - p0[1]) - (p2[0] - p0[0]) * (p1[1] - p0[1]);


def cross_area(a, b):
    return a[0] * b[1] - a[1] * b[0]


def intersection(p1, p0, q1, q0):
    if not check_rect_cross(p1, p0, q1, q0):
        return None

    s1 = cross(q0, p1, p0)
    s2 = cross(p1, q1, p0)
    s3 = cross(p0, q1, q0)
    s4 = cross(q1, p1, q0)
    if not (s1 * s2 > 0 and s3 * s4 > 0):
        return None

    s5 = cross(q1, p1, p0)
    if np.abs(s5 - s1) > 1e-8:
        return np.array([(s5 * q0[0] - s1 * q1[0]) / (s5 - s1),
                (s5 * q0[1] - s1 * q1[1]) / (s5 - s1)], dtype='float32')
    else:
        a0 = p0[1] - p1[1]
        b0 = p1[0] - p0[0]
        c0 = p0[0] * p1[1] - p1[0] * p0[1]
        a0 = q0[1] - q1[1]
        b0 = q1[0] - q0[0]
        c0 = q0[0] * q1[1] - q1[0] * q0[1]
        D = a0 * b1 - a1 * b0
        return np.array([(b0 * c1 - b1 * c0) / D, (a1 * c0 - a0 * c1) / D], dtype='float32')


def check_in_box2d(box, p):
    center_x = (box[0] + box[2]) / 2.
    center_y = (box[1] + box[3]) / 2.
    angle_cos = np.cos(-box[4])
    angle_sin = np.sin(-box[4])
    rot_x = (p[0] - center_x) * angle_cos + (p[1] - center_y) * angle_sin + center_x
    rot_y = -(p[0] - center_x) * angle_sin + (p[1] - center_y) * angle_cos + center_y
    return rot_x > box[0] - 1e-5 and rot_x < box[2] + 1e-5 and \
            rot_y > box[1] - 1e-5 and rot_y < box[3] + 1e-5


def point_cmp(a, b, center):
    return np.arctan2(a[1] - center[1], a[0] - center[0]) > \
            np.arctan2(b[1] - center[1], b[0] - center[0])


def box_overlap_rotate(cur_box, boxes):
    """
    Calculate box overlap with rotate, box: [x1, y1, x2, y2, angle]
    """
    areas = np.zeros((len(boxes), ), dtype='float32')
    cur_center = [(cur_box[0] + cur_box[2]) / 2., (cur_box[1] + cur_box[3]) / 2.]
    cur_corners = np.array([
            [cur_box[0], cur_box[1]], # (x1, y1)
            [cur_box[2], cur_box[1]], # (x2, y1)
            [cur_box[2], cur_box[3]], # (x2, y2)
            [cur_box[0], cur_box[3]], # (x1, y2)
            [cur_box[0], cur_box[1]], # (x1, y1)
            ], dtype='float32')
    cur_angle_cos = np.cos(cur_box[4])
    cur_angle_sin = np.sin(cur_box[4])
    cur_corners = rotate_around_center(cur_center, cur_angle_cos, cur_angle_sin, cur_corners)

    for i, box in enumerate(boxes):
        box_center = [(box[0] + box[2]) / 2., (box[1] + box[3]) / 2.]
        box_corners = np.array([
                [box[0], box[1]],
                [box[2], box[1]],
                [box[2], box[3]],
                [box[0], box[3]],
                [box[0], box[1]],
                ], dtype='float32')
        box_angle_cos = np.cos(box[4])
        box_angle_sin = np.sin(box[4])
        box_corners = rotate_around_center(box_center, box_angle_cos, box_angle_sin, box_corners)

        cross_points = np.zeros((16, 2), dtype='float32')
        cnt = 0
        # get intersection of lines
        for j in range(4):
            for k in range(4):
                inters = intersection(cur_corners[j + 1], cur_corners[j],
                                      box_corners[k + 1], box_corners[k])
                if inters is not None:
                    cross_points[cnt, :] = inters
                    cnt += 1
        # check corners
        for l in range(4):
            if check_in_box2d(cur_box, box_corners[l]):
                cross_points[cnt, :] = box_corners[l]
                cnt += 1
            if check_in_box2d(box, cur_corners[l]):
                cross_points[cnt, :] = cur_corners[l]
                cnt += 1

        if cnt > 0:
            poly_center = np.sum(cross_points[:cnt, :], axis=0) / cnt
        else:
            poly_center = np.zeros((2,))

        # sort the points of polygon
        for j in range(cnt - 1):
            for k in range(cnt - j - 1):
                if point_cmp(cross_points[k], cross_points[k + 1], poly_center):
                    cross_points[k], cross_points[k + 1] = \
                            cross_points[k + 1].copy(), cross_points[k].copy()

        # get the overlap areas
        area = 0.
        for j in range(cnt - 1):
            area += cross_area(cross_points[j] - cross_points[0],
                               cross_points[j + 1] - cross_points[0])
        areas[i] = np.abs(area) / 2.
    
    return areas


def box_iou(cur_box, boxes, box_type='normal'):
    cur_S = (cur_box[2] - cur_box[0]) * (cur_box[3] - cur_box[1])
    boxes_S = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
    
    if box_type == 'normal':
        inter_x1 = np.maximum(cur_box[0], boxes[:, 0])
        inter_y1 = np.maximum(cur_box[1], boxes[:, 1])
        inter_x2 = np.minimum(cur_box[2], boxes[:, 2])
        inter_y2 = np.minimum(cur_box[3], boxes[:, 3])
        inter_w = np.maximum(inter_x2 - inter_x1, 0.)
        inter_h = np.maximum(inter_y2 - inter_y1, 0.)
        inter_area = inter_w * inter_h
    elif box_type == 'rotate':
        inter_area = box_overlap_rotate(cur_box, boxes)
    else:
        raise NotImplementedError

    return inter_area / np.maximum(cur_S + boxes_S - inter_area, 1e-8)


def box_nms(boxes, scores, proposals, thresh, topk, nms_type='normal'):
    assert nms_type in ['normal', 'rotate'], \
            "unknown nms type {}".format(nms_type)
    order = np.argsort(-scores)
    boxes = boxes[order]
    scores = scores[order]
    proposals = proposals[order]

    nmsed_scores = []
    nmsed_proposals = []
    cnt = 0
    while boxes.shape[0]:
        nmsed_scores.append(scores[0])
        nmsed_proposals.append(proposals[0])
        cnt +=1
        if cnt >= topk or boxes.shape[0] == 1:
            break
        iou = box_iou(boxes[0], boxes[1:], nms_type)
        boxes = boxes[1:][iou < thresh]
        scores = scores[1:][iou < thresh]
        proposals = proposals[1:][iou < thresh]
    return nmsed_scores, nmsed_proposals


def box_nms_eval(boxes, scores, proposals, thresh, nms_type='rotate'):
    assert nms_type in ['normal', 'rotate'], \
            "unknown nms type {}".format(nms_type)
    order = np.argsort(-scores)
    boxes = boxes[order]
    scores = scores[order]
    proposals = proposals[order]

    nmsed_scores = []
    nmsed_proposals = []
    while boxes.shape[0]:
        nmsed_scores.append(scores[0])
        nmsed_proposals.append(proposals[0])
        iou = box_iou(boxes[0], boxes[1:], nms_type)
        inds = iou < thresh
        boxes = boxes[1:][inds]
        scores = scores[1:][inds]
        proposals = proposals[1:][inds]
    nmsed_scores = np.asarray(nmsed_scores)
    nmsed_proposals = np.asarray(nmsed_proposals)
    return nmsed_scores, nmsed_proposals 

def boxes_iou3d(boxes1, boxes2):
    boxes1_bev = boxes3d_to_bev(boxes1)
    boxes2_bev = boxes3d_to_bev(boxes2)

    # bev overlap
    overlaps_bev = np.zeros((boxes1_bev.shape[0], boxes2_bev.shape[0]))
    for i in range(boxes1_bev.shape[0]):
        overlaps_bev[i, :] = box_overlap_rotate(boxes1_bev[i], boxes2_bev)

    # height overlap
    boxes1_height_min = (boxes1[:, 1] - boxes1[:, 3]).reshape(-1, 1)
    boxes1_height_max = boxes1[:, 1].reshape(-1, 1)
    boxes2_height_min = (boxes2[:, 1] - boxes2[:, 3]).reshape(1, -1)
    boxes2_height_max = boxes2[:, 1].reshape(1, -1)

    max_of_min = np.maximum(boxes1_height_min, boxes2_height_min)
    min_of_max = np.minimum(boxes1_height_max, boxes2_height_max)
    overlaps_h = np.maximum(min_of_max - max_of_min, 0.)

    # 3d iou
    overlaps_3d = overlaps_bev * overlaps_h

    vol_a = (boxes1[:, 3] * boxes1[:, 4] * boxes1[:, 5]).reshape(-1, 1)
    vol_b = (boxes2[:, 3] * boxes2[:, 4] * boxes2[:, 5]).reshape(1, -1)
    iou3d = overlaps_3d / np.maximum(vol_a + vol_b - overlaps_3d, 1e-7)

    return iou3d